
 1

Compiler Construction
Niklaus Wirth

This is a slightly revised version of the book published by Addison-Wesley in 1996

ISBN 0-201-40353-6

Zürich, May 2017

Preface
This book has emerged from my lecture notes for an introductory course in compiler design at ETH
Zürich. Several times I have been asked to justify this course, since compiler design is considered a
somewhat esoteric subject, practised only in a few highly specialized software houses. Because
nowadays everything which does not yield immediate profits has to be justified, I shall try to explain
why I consider this subject as important and relevant to computer science students in general.

It is the essence of any academic education that not only knowledge, and, in the case of an
engineering education, know-how is transmitted, but also understanding and insight. In particular,
knowledge about system surfaces alone is insufficient in computer science; what is needed is an
understanding of contents. Every academically educated computer scientist must know how a
computer functions, and must understand the ways and methods in which programs are
represented and interpreted. Compilers convert program texts into internal code. Hence they
constitute the bridge between software and hardware.

Now, one may interject that knowledge about the method of translation is unnecessary for an
understanding of the relationship between source program and object code, and even much less
relevant is knowing how to actually construct a compiler. However, from my experience as a
teacher, genuine understanding of a subject is best acquired from an in-depth involvement with
both concepts and details. In this case, this involvement is nothing less than the construction of an
actual compiler.

Of course we must concentrate on the essentials. After all, this book is an introduction, and not a
reference book for experts. Our first restriction to the essentials concerns the source language. It
would be beside the point to present the design of a compiler for a large language. The language
should be small, but nevertheless it must contain all the truly fundamental elements of programming
languages. We have chosen a subset of the language Oberon for our purposes. The second
restriction concerns the target computer. It must feature a regular structure and a simple instruction
set. Most important is the practicality of the concepts taught. Oberon is a general-purpose, flexible
and powerful language, and our target computer reflects the successful RISC-architecture in an
ideal way. And finally, the third restriction lies in renouncing sophisticated techniques for code
optimization. With these premisses, it is possible to explain a whole compiler in detail, and even to
construct it within the limited time of a course.

Chapters 2 and 3 deal with the basics of language and syntax. Chapter 4 is concerned with syntax
analysis, that is the method of parsing sentences and programs. We concentrate on the simple but
surprisingly powerful method of recursive descent, which is used in our exemplary compiler. We
consider syntax analysis as a means to an end, but not as the ultimate goal. In Chapter 5, the

 2

transition from a parser to a compiler is prepared. The method depends on the use of attributes for
syntactic constructs.

After the presentation of the language Oberon-0, Chapter 7 shows the development of its parser
according to the method of recursive descent. For practical reasons, the handling of syntactically
erroneous sentences is also discussed. In Chapter 8 we explain why languages which contain
declarations, and which therefore introduce dependence on context, can nevertheless be treated as
syntactically context free.

Up to this point no consideration of the target computer and its instruction set has been necessary.
Since the subsequent chapters are devoted to the subject of code generation, the specification of a
target becomes unavoidable (Chapter 9). It is a RISC architecture with a small instruction set and a
set of registers. The central theme of compiler design, the generation of instruction sequences, is
thereafter distributed over three chapters: code for expressions and assignments to variables
(Chapter 10), for conditional and repeated statements (Chapter 11) and for procedure declarations
and calls (Chapter 12). Together they cover all the constructs of Oberon-0.

The subsequent chapters are devoted to several additional, important constructs of general-
purpose programming languages. Their treatment is more cursory in nature and less concerned
with details, but they are referenced by several suggested exercises at the end of the respective
chapters. These topics are further elementary data types (Chapter 13), and the constructs of open
arrays, of dynamic data structures, and of procedure types called methods in object-oriented
terminology (Chapter 14).

Chapter 15 is concerned with the module construct and the principle of information hiding. This
leads to the topic of software development in teams, based on the definition of interfaces and the
subsequent, independent implementation of the parts (modules). The technical basis is the
separate compilation of modules with complete checks of the compatibility of the types of all
interface components. This technique is of paramount importance for software engineering in
general, and for modern programming languages in particular.

Finally, Chapter 16 gives a brief overview of problems of code optimization. It is necessary because
of the semantic gap between source languages and computer architectures on the one hand, and
our desire to use the available resources as well as possible on the other.

Acknowledgements

I express my sincere thanks to all who contributed with their suggestions and criticism to this book
which matured over the many years in which I have taught the compiler design course at ETH
Zürich. In particular, I am indebted to Hanspeter Mössenböck and Michael Franz who carefully read
the manuscript and subjected it to their scrutiny. Furthermore, I thank Stephan Gehring, Stefan
Ludwig and Josef Templ for their valuable comments and cooperation in teaching the course.

 N. W. December 1995

Preface to the Revised Edition of 2011
This book appeared first in 1976 in German. The source language used as a simple example was
PL0, a subset of Pascal. The target computer had a stack architecture similar to the P-code
interpreter used for many Pascal implementations. A strongly revised edition of the book appeared
in 1995. PL0 was replaced by Oberon-0, a subset of Pascal's descendant Oberon. In the target
computer a RISC architecture replaced the stack architecture. Reduced instruction set computers
had become predominant in the early 1990s. They shared with the stack computer the underlying
simplicity. The generated RISC-code was to be interpreted like the P-code by an emulator program.
The target computer remained an abstract machine.

In the present new edition Oberon-0 is retained as the source language. The instruction set of the
target computer is slightly extended. It is still called RISC, but the instruction set is complete like
that of a conventional computer. New, however, is that this computer is available as genuine
hardware, and not only as a programmed emulator. This had become possible through the use of a

 3

field programmable gate array (FPGA). The target computer is now specified as a text in the
language Verilog. From this text the circuit is automatically compiled and then loaded into the
FPGA's configuration memory. The RISC thereby gains in actuality and reality. This in particular,
because of the availability of a low-cost development board containing the FPGA chip. Therefore,
the presented system becomes attractive for courses, in which hardware-software codesign is
taught, where a complete understanding of hardware and software is the goal.

May this text be instructive not only for future compiler designers, but for all who wish to gain insight
into the detailed functioning of hardware together with software.

Niklaus Wirth, Zürich, February 2014

http://www.inf.ethz.ch/personal/wirth/Oberon/Oberon07.Report.pdf
http://www.inf.ethz.ch/personal/wirth/FPGA-relatedWork/RISC.pdf
http://www.digilentinc.com/Products/Detail.cfm?Prod=S3BOARD
http://www.xilinx.com/products/silicon-devices/fpga/spartan-3.html

Preface to the Revised Edition of 2017
In the last years, the Oberon System had been revised and implemented on an FPGA-development
board featuring the RISC Computer. The Oberon-0 compiler has been adapted accordingly, as iIt
does not make sense to provide an interpreter for RISC on a RISC itself. The compiler therefore
now generates code in the format required by the regular Oberon loader.
The language Oberon-0, a subset of Oberon, remains unchanged with the exception of input and
output statements. They now embody the successful Oberon scanner concept. Execution is
triggered by the Oberon concept of commands.

 4

Contents
Preface

1. Introduction

2. Language and Syntax
 2.1. Exercises

3. Regular Languages

4. Analysis of Context-free Languages
 4.1. The method of recursive descent
 4.2. Table-driven top-down parsing
 4.3. Bottom-up parsing
 4.4. Exercises

5. Attributed Grammars and Semantics
 5.1. Type rules
 5.2. Evaluation rules
 5.3. Translation rules
 5.4. Exercises

6. The Programming Language Oberon-0

7. A Parser for Oberon-0
 7.1. The scanner
 7.2. The parser
 7.3. Coping with syntactic errors
 7.4. Exercises

8. Consideration of Context Specified by Declarations
 8.1. Declarations
 8.2. Entries for data types
 8.3. Data representation at run-time
 8.4. Exercises

9. A RISC Architecture as Target
 9.1. Registers and resources
 9.2. Register instructions
 9.3. Memory instructions
 9.4. Branch instructions
 9.5. An emulator

10. Expressions and Assignments
 10.1. Straight code generation according to the stack principle
 10.2. Delayed code generation
 10.3. Indexed variables and record fields
 10.4. Exercises

11. Conditional and Repeated Statements and Boolean Expressions
 11.1. Comparisons and jumps
 11.2. Conditional and repeated statements
 11.3. Boolean operations
 11.4. Assignments to Boolean variables
 11.5. Exercises

12. Procedures and the Concept of Locality
 12.1. Run-time organization of the store
 12.2. Addressing of variables
 12.3. Parameters
 12.4. Procedure declarations and calls

 5

 12.5. Standard procedures
 12.6. Function procedures
 12.7. Exercises

13. Elementary Data Types
 13.1. The types REAL and LONGREAL
 13.2. Compatibility between numeric data types
 13.3. The data type SET
 13.4. Exercises

14. Open Arrays, Pointers and Procedure Types
 14.1. Open arrays
 14.2. Dynamic data structures and pointers
 14.3. Procedure types
 14.5. Exercises

15. Modules and Separate Compilation
 15.1. The principle of information hiding
 15.2. Separate compilation
 15.3. Implementation of symbol files
 15.4. Addressing external objects
 15.5. Checking configuration consistency
 15.6. Exercises

16. Code Optimizations and the Frontend/backend Structure
 16.1. General considerations
 16.2. Simple optimizations
 16.3. Avoiding repeated evaluations
 16.4. Register allocation
 16.5. The frontend/backend compiler structure
 16.6. Exercises

Appendix
 Syntax of Oberon-0
 The ASCII character set

 6

1. Introduction
Computer programs are formulated in a programming language and specify classes of
computing processes. Computers, however, interpret sequences of particular instructions, but
not program texts. Therefore, the program text must be translated into a suitable instruction
sequence before it can be processed by a computer. This translation can be automated,
which implies that it can be formulated as a program itself. The translation program is called a
compiler, and the text to be translated is called source text (or sometimes source code).

It is not difficult to see that this translation process from source text to instruction sequence
requires considerable effort and follows complex rules. The construction of the first compiler
for the language Fortran (formula translator) around 1956 was a daring enterprise, whose
success was not at all assured. It involved about 18 man years of effort, and therefore figured
among the largest programming projects of the time.

The intricacy and complexity of the translation process could be reduced only by choosing a
clearly defined, well structured source language. This occurred for the first time in 1960 with
the advent of the language Algol 60, which established the technical foundations of compiler
design that still are valid today. For the first time, a formal notation was also used for the
definition of the language's structure (Naur, 1960).

The translation process is now guided by the structure of the analysed text. The text is
decomposed, parsed into its components according to the given syntax. For the most
elementary components, their semantics is recognized, and the meaning (semantics) of the
composite parts is the result of the semantics of their components. Naturally, the meaning of
the source text must be preserved by the translation.

The translation process essentially consists of the following parts:

1. The sequence of characters of a source text is translated into a corresponding sequence of
symbols of the vocabulary of the language. For instance, identifiers consisting of letters and
digits, numbers consisting of digits, delimiters and operators consisting of special characters
are recognized in this phase, which is called lexical analysis.

2. The sequence of symbols is transformed into a representation that directly mirrors the
syntactic structure of the source text and lets this structure easily be recognized. This phase
is called syntax analysis (parsing).

3. High-level languages are characterized by the fact that objects of programs, for example
variables and functions, are classified according to their type. Therefore, in addition to
syntactic rules, compatibility rules among types of operators and operands define the
language. Hence, verification of whether these compatibility rules are observed by a
program is an additional duty of a compiler. This verification is called type checking.

4. On the basis of the representation resulting from step 2, a sequence of instructions taken
from the instruction set of the target computer is generated. This phase is called code
generation. In general it is the most involved part, not least because the instruction sets of
many computers lack the desirable regularity. Often, the code generation part is therefore
subdivided further.

A partitioning of the compilation process into as many parts as possible was the predominant
technique until about 1980, because until then the available store was too small to
accommodate the entire compiler. Only individual compiler parts would fit, and they could be
loaded one after the other in sequence. The parts were called passes, and the whole was
called a multipass compiler. The number of passes was typically 4 - 6, but reached 70 in a
particular case (for PL/I) known to the author. Typically, the output of pass k served as input of
pass k+1, and the disk served as intermediate storage (Figure 1.1). The very frequent access
to disk storage resulted in long compilation times.

 7

Figure 1.1. Multipass compilation.

Modern computers with their apparently unlimited stores make it feasible to avoid intermediate
storage on disk. And with it, the complicated process of serializing a data structure for output,
and its reconstruction on input can be discarded as well. With single-pass compilers,
increases in speed by factors of several thousands are therefore possible. Instead of being
tackled one after another in strictly sequential fashion, the various parts (tasks) are
interleaved. For example, code generation is not delayed until all preparatory tasks are
completed, but it starts already after the recognition of the first sentential structure of the
source text.

A wise compromise exists in the form of a compiler with two parts, namely a front end and a
back end. The first part comprises lexical and syntax analyses and type checking, and it
generates a tree representing the syntactic structure of the source text. This tree is held in
main store and constitutes the interface to the second part which handles code generation.
The main advantage of this solution lies in the independence of the front end of the target
computer and its instruction set. This advantage is inestimable if compilers for the same
language and for various computers must be constructed, because the same front end serves
them all.

The idea of decoupling source language and target architecture has also led to projects
creating several front ends for different languages generating trees for a single back end.
Whereas for the implementation of m languages for n computers m * n compilers had been
necessary, now m front ends and n back ends suffice (Figure 1.2).

Figure 1.2. Front ends and back ends.

This modern solution to the problem of porting a compiler reminds us of the technique which
played a significant role in the propagation of Pascal around 1975 (Wirth, 1971). The role of
the structural tree was assumed by a linearized form, a sequence of commands of an abstract
computer. The back end consisted of an interpreter program which was implementable with
little effort, and the linear instruction sequence was called P-code. The drawback of this
solution was the inherent loss of efficiency common to interpreters.

Frequently, one encounters compilers which do not directly generate binary code, but rather
assembler text. For a complete translation an assembler is also involved after the compiler.
Hence, longer translation times are inevitable. Since this scheme hardly offers any
advantages, we do not recommend this approach.

Oberon Modula Pascal

ARM RISC MIPS

Syntax tree

lexical
analysis

syntax
analysis

code
generation

 8

Increasingly, high-level languages are also employed for the programming of microcontrollers
used in embedded applications. Such systems are primarily used for data acquisition and
automatic control of machinery. In these cases, the store is typically small and is insufficient to
carry a compiler. Instead, software is generated with the aid of other computers capable of
compiling. A compiler which generates code for a computer different from the one executing
the compiler is called a cross compiler. The generated code is then transferred - downloaded -
via a data transmission line.

In the following chapters we shall concentrate on the theoretical foundations of compiler
design, and thereafter on the development of an actual single-pass compiler.

 9

2. Language and Syntax
Every language displays a structure called its grammar or syntax. For example, a correct sentence
always consists of a subject followed by a predicate, correct here meaning well formed. This fact
can be described by the following formula:

sentence = subject predicate.

If we add to this formula the two further formulas

subject = "John" | "Mary".
predicate = "eats" | "talks".

then we define herewith exactly four possible sentences, namely

John eats Mary eats
John talks Mary talks

where the symbol | is to be pronounced as or. We call these formulas syntax rules, productions, or
simply syntactic equations. Subject and predicate are syntactic classes. A shorter notation for the
above omits meaningful identifiers:

S = AB. L = {ac, ad, bc, bd}
A = "a" | "b".
B = "c" | "d".

We will use this shorthand notation in the subsequent, short examples. The set L of sentences
which can be generated in this way, that is, by repeated substitution of the left-hand sides by the
right-hand sides of the equations, is called the language.

The example above evidently defines a language consisting of only four sentences. Typically,
however, a language contains infinitely many sentences. The following example shows that an
infinite set may very well be defined with a finite number of equations. The symbol ∅ stands for the
empty sequence.

S = A. L = {∅, a, aa, aaa, aaaa, ... }
A = "a" A | ∅.

The means to do so is recursion which allows a substitution (here of A by "a"A) be repeated
arbitrarily often.

Our third example is again based on the use of recursion. But it generates not only sentences
consisting of an arbitrary sequence of the same symbol, but also nested sentences:

S = A. L = {b, abc, aabcc, aaabccc, ... }
A = "a" A "c" | "b".

It is clear that arbitrarily deep nestings (here of As) can be expressed, a property particularly
important in the definition of structured languages.

Our fourth and last example exhibits the structure of expressions. The symbols E, T, F, and V stand
for expression, term, factor, and variable.

E = T | A "+" T.
T = F | T "*" F.
F = V | "(" E ")".
V = "a" | "b" | "c" | "d".

From this example it is evident that a syntax does not only define the set of sentences of a
language, but also provides them with a structure. The syntax decomposes sentences in their
constituents as shown in the example of Figure 2.1. The graphical representations are called
structural trees or syntax trees.

 10

Figure 2.1. Structure of expressions

Let us now formulate the concepts presented above more rigorously:

A language is defined by the following:

1. The set of terminal symbols. These are the symbols that occur in its sentences. They are said to
be terminal, because they cannot be substituted by any other symbols. The substitution process
stops with terminal symbols. In our first example this set consists of the elements a, b, c and d.
The set is also called vocabulary.

2. The set of nonterminal symbols. They denote syntactic classes and can be substituted. In our
first example this set consists of the elements S, A and B.

3. The set of syntactic equations (also called productions). These define the possible substitutions
of nonterminal symbols. An equation is specified for each nonterminal symbol.

4. The start symbol. It is a nonterminal symbol, in the examples above denoted by S.

A language is, therefore, the set of sequences of terminal symbols which, starting with the start
symbol, can be generated by repeated application of syntactic equations, that is, substitutions.

We also wish to define rigorously and precisely the notation in which syntactic equations are
specified. Let nonterminal symbols be identifiers as we know them from programming languages,
that is, as sequences of letters (and possibly digits), for example, expression, term. Let terminal
symbols be character sequences enclosed in quotes (strings), for example, "=", "|". For the
definition of the structure of these equations it is convenient to use the tool just being defined itself:

syntax = production syntax | ∅.
production = identifier "=" expression "." .
expression = term | expression "|" term.
term = factor | term factor.
factor = identifier | string.

identifier = letter | identifier letter | identifier digit.
string = stringhead """.
stringhead = """ | stringhead character.
letter = "A" | ... | "Z".
digit = "0" | ... | "9".

This notation was introduced in 1960 by J. Backus and P. Naur in almost identical form for the
formal description of the syntax of the language Algol 60. It is therefore called Backus Naur Form
(BNF) (Naur, 1960). As our example shows, using recursion to express simple repetitions is rather

a * b + c a + b * c (a+b)*(c+d)

A

+

*

a b

c

A

+

*

b c

a

A

*

(A) (A)

+

a b

+

c d

 11

detrimental to readability. Therefore, we extend this notation by two constructs to express repetition
and optionality. Furthermore, we allow expressions to be enclosed within parentheses. Thereby an
extension of BNF called EBNF (Wirth, 1977) is postulated, which again we immediately use for its
own, precise definition:

syntax = {production}.
production = identifier "=" expression "." .
expression = term {"|" term}.
term = factor {factor}.
factor = identifier | string | "(" expression ")" | "[" expression "]" | "{" expression "}".

identifier = letter {letter | digit}.
string = """ {character} """.
letter = "A" | ... | "Z".
digit = "0" | ... | "9".

A factor of the form {x} is equivalent to an arbitrarily long sequence of x, including the empty
sequence. A production of the form

A = AB | ∅.

is now formulated more briefly as A = {B}. A factor of the form [x] is equivalent to "x or nothing",
that is, it expresses optionality. Hence, the need for the special symbol ∅ for the empty sequence
vanishes.

The idea of defining languages and their grammar with mathematical precision goes back to N.
Chomsky. It became clear, however, that the presented, simple scheme of substitution rules was
insufficient to represent the complexity of spoken languages. This remained true even after the
formalisms were considerably expanded. In contrast, this work proved extremely fruitful for the
theory of programming languages and mathematical formalisms. With it, Algol 60 became the first
programming language to be defined formally and precisely. In passing, we emphasize that this
rigour applied to the syntax only, not to the semantics.

The use of the Chomsky formalism is also responsible for the term programming language,
because programming languages seemed to exhibit a structure similar to spoken languages. We
believe that this term is rather unfortunate on the whole, because a programming language is not
spoken, and therefore is not a language in the true sense of the word. Formalism or formal notation
would have been more appropriate terms.

One wonders why an exact definition of the sentences belonging to a language should be of any
great importance. In fact, it is not really. However, it is important to know whether or not a sentence
is well formed. But even here one may ask for a justification. Ultimately, the structure of a (well
formed) sentence is relevant, because it is instrumental in establishing the sentence's meaning.
Owing to the syntactic structure, the individual parts of the sentence and their meaning can be
recognized independently, and together they yield the meaning of the whole.

Let us illustrate this point using the following, trivial example of an expression with the addition
symbol. Let E stand for expression, and N for number:

E = N | E "+" E.
N = "1" | "2" | "3" | "4" .

Evidently, "4 + 2 + 1" is a well-formed expression. It may even be derived in several ways, each
corresponding to a different structure, as shown in Figure 2.2.

 12

Figure 2.2. Differing structural trees for the same expression.

The two differing structures may also be expressed with appropriate parentheses, namely as (4 +
2) + 1 and as 4 + (2 + 1), respectively. Fortunately, thanks to the associativity of addition both yield
the same value 7. But this need not always be the case. The mere use of subtraction in place of
addition yields a counter example which shows that the two differing structures also yield a different
interpretation and result: (4 - 2) - 1 = 1, 4 - (2 - 1) = 3. The example illustrates two facts:

1. Interpretation of sentences always rests on the recognition of their syntactic structure.
2. Every sentence must have a single structure in order to be unambiguous.

If the second requirement is not satisfied, ambiguous sentences arise. These may enrich spoken
languages; ambiguous programming languages, however, are simply useless.

We call a syntactic class ambiguous if it can be attributed several structures. A language is
ambiguous if it contains at least one ambiguous syntactic class (construct).

2.1. Exercises
2.1. The Algol 60 Report contains the following syntax (translated into EBNF):

primary = unsignedNumber | variable | "(" arithmeticExpression ")" |
factor = primary | factor "↑" primary.
term = factor | term ("×" | "/" | "÷") factor.
simpleArithmeticExpression = term | ("+" | "-") term | simpleArithmeticExpression ("+" | "-") term.
arithmeticExpression = simpleArithmeticExpression |
 "IF" BooleanExpression "THEN" simpleArithmeticExpression "ELSE" arithmeticExpression.
relationalOperator = "=" | "≠" | "≤" | "<" | "≥" | ">" .
relation = arithmeticExpression relationalOperator arithmeticExpression.
BooleanPrimary = logicalValue | variable | relation | "(" BooleanExpression ")" |
BooleanSecondary = BooleanPrimary | "¬" BooleanPrimary.
BooleanFactor = BooleanSecondary | BooleanFactor "∧" BooleanSecondary.
BooleanTerm = BooleanFactor | BooleanTerm "∨" BooleanFactor.
implication = BooleanTerm | implication "⊃" BooleanTerm.
simpleBoolean = implication | simpleBoolean "≡" implication.
BooleanExpression = simpleBoolean |
 "IF" BooleanExpression "THEN" simpleBoolean "ELSE" BooleanExpression.

Determine the syntax trees of the following expressions, in which letters are to be taken as
variables:

x + y + z
x × y + z
x + y × z
(x - y) × (x + y)
-x ÷ y

A

A + A

A + A

4 2

1

A

A + A

A + A 4

2 1

 13

a + b < c + d
a + b < c ∨ d ≠ e ∧ ¬ f ⊃ g > h ≡ i × j = k ↑ l ∨ m - n + p ≤ q

2.2. The following productions also are part of the original definition of Algol 60. They contain
ambiguities which were eliminated in the Revised Report.

forListElement = arithmeticExpression |
 arithmeticExpression "STEP" arithmeticExpression "UNTIL" arithmeticExpression |
 arithmeticExpression "WHILE" BooleanExpression.
forList = forListElement | forList "," forListElement.
forClause = "FOR" variable ":=" forList "DO" .
forStatement = forClause statement.
compoundTail = statement "END" | statement ";" compoundTail.
compoundStatement = "BEGIN" compoundTail.
unconditional Statement = basicStatement | forStatement | compoundStatement |
ifStatement = "IF" BooleanExpression "THEN" unconditionalStatement.
conditionalStatement = ifStatement | ifStatement "ELSE" statement.
statement = unconditionalStatement | conditionalStatement.

Find at least two different structures for the following expressions and statements. Let A and B
stand for "basic statements".

IF a THEN b ELSE c = d
IF a THEN IF b THEN A ELSE B
IF a THEN FOR ... DO IF b THEN A ELSE B

Propose an alternative syntax which is unambiguous.

2.3. Consider the following constructs and find out which ones are correct in Algol, and which ones
in Oberon:

a + b = c + d
a * -b
a < b & c < d

Evaluate the following expressions:

5 * 13 DIV 4 =
13 DIV 5*4 =

 14

3. Regular Languages
Syntactic equations of the form defined in EBNF generate context-free languages. The term
"context-free" is due to Chomsky and stems from the fact that substitution of the symbol left of
= by a sequence derived from the expression to the right of = is always permitted, regardless
of the context in which the symbol is embedded within the sentence. It has turned out that this
restriction to context freedom (in the sense of Chomsky) is quite acceptable for programming
languages, and that it is even desirable. Context dependence in another sense, however, is
indispensible. We will return to this topic in Chapter 8.

Here we wish to investigate a subclass rather than a generalization of context-free languages.
This subclass, known as regular languages, plays a significant role in the realm of
programming languages. In essence, they are the context-free languages whose syntax
contains no recursion except for the specification of repetition. Since in EBNF repetition is
specified directly and without the use of recursion, the following, simple definition can be
given:

A language is regular, if its syntax can be expressed by a single EBNF expression.

The requirement that a single equation suffices also implies that only terminal symbols occur
in the expression. Such an expression is called a regular expression.

Two brief examples of regular languages may suffice. The first defines identifiers as they are
common in most languages; and the second defines integers in decimal notation. We use the
nonterminal symbols letter and digit for the sake of brevity. They can be eliminated by
substitution, whereby a regular expression results for both identifier and integer.

identifier = letter {letter | digit}.
integer = digit {digit}.
letter = "A" | "B" | ... | "Z".
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".

The reason for our interest in regular languages lies in the fact that programs for the
recognition of regular sentences are particularly simple and efficient. By "recognition" we
mean the determination of the structure of the sentence, and thereby naturally the
determination of whether the sentence is well formed, that is, it belongs to the language.
Sentence recognition is called syntax analysis.

For the recognition of regular sentences a finite automaton, also called a state machine, is
necessary and sufficient. In each step the state machine reads the next symbol and changes
state. The resulting state is solely determined by the previous state and the symbol read. If the
resulting state is unique, the state machine is deterministic, otherwise nondeterministic. If the
state machine is formulated as a program, the state is represented by the current point of
program execution.

The analysing program can be derived directly from the defining syntax in EBNF. For each
EBNF construct K there exists a translation rule which yields a program fragment Pr(K). The
translation rules from EBNF to program text are shown below. Therein sym denotes a global
variable always representing the symbol last read from the source text by a call to procedure
next. Procedure error terminates program execution, signalling that the symbol sequence read
so far does not belong to the language.

K Pr(K)

"x" IF sym = "x" THEN next ELSE error END
(exp) Pr(exp)
[exp] IF sym IN first(exp) THEN Pr(exp) END
{exp} WHILE sym IN first(exp) DO Pr(exp) END
fac0 fac1 ... facn Pr(fac0); Pr(fac1); ... Pr(facn

 15

term0 | term1 | ... | termn CASE sym OF
 first(term0): Pr(term0)
 | first(term1): Pr(term1)
 ...
 | first(termn): Pr(termn)
 END

The set first(K) contains all symbols with which a sentence derived from construct K may start.
It is the set of start symbols of K. For the two examples of identifiers and integers they are:

first(integer) = digits = {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"}
first(identifier) = letters = {"A", "B", ... , "Z"}

The application of these simple translations rules generating a parser from a given syntax is,
however, subject to the syntax being deterministic. This precondition may be formulated more
concretely as follows:

K Cond(K)

term0 | term1 The terms must not have any common start symbols.
fac0 fac1 If fac0 contains the empty sequence, then the factors must
 not have any common start symbols.
[exp] or {exp} The sets of start symbols of exp and of symbols
 that may follow K must be disjoint.

These conditions are satisfied trivially in the examples of identifiers and integers, and
therefore we obtain the following programs for their recognition:

IF sym IN letters THEN next ELSE error END ;
WHILE sym IN letters + digits DO
 CASE sym OF
 "A" .. "Z": next
 | "0" .. "9": next
 END
END

IF sym IN digits THEN next ELSE error END ;
WHILE sym IN digits DO next END

Frequently, the program obtained by applying the translation rules can be simplified by
eliminating conditions which are evidently established by preceding conditions. The conditions
sym IN letters and sym IN digits are typically formulated as follows:

("A" <= sym) & (sym <= "Z") ("0" <= sym) & (sym <= "9")

The significance of regular languages in connection with programming languages stems from
the fact that the latter are typically defined in two stages. First, their syntax is defined in terms
of a vocabulary of abstract terminal symbols. Second, these abstract symbols are defined in
terms of sequences of concrete terminal symbols, such as ASCII characters. This second
definition typically has a regular syntax. The separation into two stages offers the advantage
that the definition of the abstract symbols, and thereby of the language, is independent of any
concrete representation in terms of any particular character sets used by any particular
equipment.

This separation also has consequences on the structure of a compiler. The process of syntax
analysis is based on a procedure to obtain the next symbol. This procedure in turn is based on
the definition of symbols in terms of sequences of one or more characters. This latter
procedure is called a scanner, and syntax analysis on this second, lower level, lexical
analysis. The definition of symbols in terms of characters is typically given in terms of a
regular language, and therefore the scanner is typically a state machine.

 16

We summarize the differences between the two levels as follows:

Process Input element Algorithm Syntax

Lexical analysis Character Scanner Regular
Syntax analysis Symbol Parser Context free

As an example we show a scanner for a parser of EBNF. Its terminal symbols and their
definition in terms of characters are

symbol = {blank} (identifier | string | "(" | ")" | "[" | "]" | "{" | "}" | "|" | "=" | ".") .
identifier = letter {letter | digit}.
string = """ {character} """.

From this we derive the procedure GetSym which, upon each call, assigns a numeric value
representing the next symbol read to the global variable sym. If the symbol is an identifier or a
string, the actual character sequence is assigned to the further global variable id. It must be
noted that typically a scanner also takes into account rules about blanks and ends of lines.
Mostly these rules say: blanks and ends of lines separate consecutive symbols, but otherwise
are of no significance. Procedure GetSym, formulated in Oberon, makes use of the following
declarations.

CONST IdLen = 32;
 ident = 0; literal = 2; lparen = 3; lbrak = 4; lbrace = 5; bar = 6; eql = 7;
 rparen = 8; rbrak = 9; rbrace = 10; period = 11; other = 12;

TYPE Identifier = ARRAY IdLen OF CHAR;

VAR ch: CHAR;
 sym: INTEGER;
 id: Identifier;
 R: Texts.Reader;

Note that the abstract reading operation is now represented by the concrete call
Texts.Read(R, ch). R is a globally declared Reader specifying the source text. Also note that
variable ch must be global, because at the end of GetSym it may contain the first character
belonging to the next symbol. This must be taken into account upon the subsequent call of
GetSym.

PROCEDURE GetSym;
 VAR i: INTEGER;
BEGIN
 WHILE ~R.eot & (ch <= " ") DO Texts.Read(R, ch) END ; (*skip blanks*)
 CASE ch OF
 "A" .. "Z", "a" .. "z": sym := ident; i := 0;
 REPEAT id[i] := ch; INC(i); Texts.Read(R, ch)
 UNTIL (CAP(ch) < "A") OR (CAP(ch) > "Z");
 id[i] := 0X
 | 22X: (*quote*)
 Texts.Read(R, ch); sym := literal; i := 0;
 WHILE (ch # 22X) & (ch > " ") DO
 id[i] := ch; INC(i); Texts.Read(R, ch)
 END ;
 IF ch <= " " THEN error(1) END ;
 id[i] := 0X; Texts.Read(R, ch)
 | "=" : sym := eql; Texts.Read(R, ch)
 | "(" : sym := lparen; Texts.Read(R, ch)
 | ")" : sym := rparen; Texts.Read(R, ch)
 | "[" : sym := lbrak; Texts.Read(R, ch)
 | "]" : sym := rbrak; Texts.Read(R, ch)
 | "{" : sym := lbrace; Texts.Read(R, ch)

 17

 | "}" : sym := rbrace; Texts.Read(R, ch)
 | "|" : sym := bar; Texts.Read(R, ch)
 | "." : sym := period; Texts.Read(R, ch)
 ELSE sym := other; Texts.Read(R, ch)
 END
END GetSym

3.1. Exercise
Sentences of regular languages can be recognized by finite state machines. They are usually
described by transition diagrams. Each node represents a state, and each edge a state
transition. The edge is labelled by the symbol that is read by the transition. Consider the
following diagrams and describe the syntax of the corresponding languages in EBNF.

a (x)

o

a +

b

c *.

 18

4. Analysis of Context-free Languages
4.1. The method of Recursive Descent
Regular languages are subject to the restriction that no nested structures can be expressed.
Nested structures can be expressed with the aid of recursion only (see Chapter 2).

A finite state machine therefore cannot suffice for the recognition of sentences of context free
languages. We will nevertheless try to derive a parser program for the third example in
Chapter 2, by using the methods explained in Chapter 3. Wherever the method will fail - and it
must fail - lies the clue for a possible generalization. It is indeed surprising how small the
necessary additional programming effort turns out to be.

The construct

A = "a" A "c" | "b".

leads, after suitable simplification and the use of an IF instead of a CASE statement, to the
following piece of program:

IF sym = "a" THEN
 next;
 IF sym = A THEN next ELSE error END ;
 IF sym = "c" THEN next ELSE error END
ELSIF sym = "b" THEN next
ELSE error
END

Here we have blindly treated the nonterminal symbol A in the same fashion as terminal
symbols. This is of course not acceptable. The purpose of the third line of the program is to
parse a construct of the form A (rather than to read a symbol A). However, this is precisely the
purpose of our program too. Therefore, the simple solution to our problem is to give the
program a name, that is, to give it the form of a procedure, and to substitute the third line of
program by a call to this procedure. Just as in the syntax the construct A is recursive, so is the
procedure A recursive:

PROCEDURE A;
BEGIN
 IF sym = "a" THEN
 next; A;
 IF sym = "c" THEN next ELSE error END
 ELSIF sym = "b" THEN next
 ELSE error
 END
END A

The necessary extension of the set of translation rules is extremely simple. The only additional
rule is:

A parsing algorithm is derived for each nonterminal symbol, and it is formulated as a
procedure carrying the name of the symbol. The occurrence of the symbol in the syntax is
translated into a call of the corresponding procedure.

Note: this rule holds regardless of whether the procedure is recursive or not.

It is important to verify that the conditions for a deterministic algorithm are satisfied. This
implies among other things that in an expression of the form

term0 | term1

the terms must not feature any common start symbols. This requirement excludes left
recursion. If we consider the left recursive production

 19

A = A "a" | "b".

we recognize that the requirement is violated, simply because b is a start symbol of A (b IN
first(A)), and because therefore first(A"a") and first("b") are not disjoint. "b" is the common
element.

The simple consequence is: left recursion can and must be replaced by repetition. In the
example above A = A "a" | "b" is replaced by A = "b" {"a"}.

Another way to look at our step from the state machine to its generalization is to regard the
latter as a set of state machines which call upon each other and upon themselves. In principle,
the only new condition is that the state of the calling machine is resumed after termination of
the called state machine. The state must therefore be preserved. Since state machines are
nested, a stack is the appropriate form of store. Our extension of the state machine is
therefore called a pushdown automaton. Theoretically relevant is the fact that the stack
(pushdown store) must be arbitrarily deep. This is the essential difference between the finite
state machine and the infinite pushdown automaton.

The general principle which is suggested here is the following: consider the recognition of the
sentential construct which begins with the start symbol of the underlying syntax as the
uppermost goal. If during the pursuit of this goal, that is, while the production is being parsed,
a nonterminal symbol is encountered, then the recognition of a construct corresponding to this
symbol is considered as a subordinate goal to be pursued first, while the higher goal is
temporarily suspended. This strategy is therefore also called goal-oriented parsing. If we look
at the structural tree of the parsed sentence we recognize that goals (symbols) higher in the
tree are tackled first, lower goals (symbols) thereafter. The method is therefore called top-
down parsing (Knuth, 1971; Aho and Ullman, 1977). Moreover, the presented implementation
of this strategy based on recursive procedures is known as recursive descent parsing.

Finally, we recall that decisions about the steps to be taken are always made on the basis of
the single, next input symbol only. The parser looks ahead by one symbol. A lookahead of
several symbols would complicate the decision process considerably, and thereby also slow it
down. For this reason we will restrict our attention to languages which can be parsed with a
lookahead of a single symbol.

As a further example to demonstrate the technique of recursive descent parsing, let us
consider a parser for EBNF, whose syntax is summarized here once again:

syntax = {production}.
production = identifier "=" expression "." .
expression = term {"|" term}.
term = factor {factor}.
factor = identifier | string | "(" expression ")" | "[" expression "]" | "{" expression
"}".

By application of the given translation rules and subsequent simplification the following parser
results. It is formulated as an Oberon module:

MODULE EBNF;
 IMPORT Viewers, Texts, TextFrames, Oberon;

 CONST IdLen = 32;
 ident = 0; literal = 2; lparen = 3; lbrak = 4; lbrace = 5; bar = 6; eql = 7;
 rparen = 8; rbrak = 9; rbrace = 10; period = 11; other = 12;

 TYPE Identifier = ARRAY IdLen OF CHAR;

 VAR ch: CHAR;
 sym: INTEGER;
 lastpos: LONGINT;
 id: Identifier;

Richard Gleaves
See file
EBNF.Mod

Richard Gleaves

 20

 R: Texts.Reader;
 W: Texts.Writer;

 PROCEDURE error(n: INTEGER);
 VAR pos: LONGINT;
 BEGIN pos := Texts.Pos(R);
 IF pos > lastpos+4 THEN (*avoid spurious error messages*)
 Texts.WriteString(W, " pos"); Texts.WriteInt(W, pos, 6);
 Texts.WriteString(W, " err"); Texts.WriteInt(W, n, 4); lastpos := pos;
 Texts.WriteString(W, " sym "); Texts.WriteInt(W, sym, 4);
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END
 END error;

 PROCEDURE GetSym;
 BEGIN ... (*see Chapter 3*)
 END GetSym;

 PROCEDURE record(id: Identifier; class: INTEGER);
 BEGIN (*enter id in appropriate list of identifiers*)
 END record;

 PROCEDURE expression;

 PROCEDURE term;

 PROCEDURE factor;
 BEGIN
 IF sym = ident THEN record(id, 1); GetSym
 ELSIF sym = literal THEN record(id, 0); GetSym
 ELSIF sym = lparen THEN
 GetSym; expression;
 IF sym = rparen THEN GetSym ELSE error(2) END
 ELSIF sym = lbrak THEN
 GetSym; expression;
 IF sym = rbrak THEN GetSym ELSE error(3) END
 ELSIF sym = lbrace THEN
 GetSym; expression;
 IF sym = rbrace THEN GetSym ELSE error(4) END
 ELSE error(5)
 END
 END factor;

 BEGIN (*term*) factor;
 WHILE sym < bar DO factor END
 END term;

 BEGIN (*expression*) term;
 WHILE sym = bar DO GetSym; term END
 END expression;

 PROCEDURE production;
 BEGIN (*sym = ident*) record(id, 2); GetSym;
 IF sym = eql THEN GetSym ELSE error(7) END ;
 expression;
 IF sym = period THEN GetSym ELSE error(8) END
 END production;

 PROCEDURE syntax;
 BEGIN

 21

 WHILE sym = ident DO production END
 END syntax;

 PROCEDURE Compile*;
 BEGIN (*set R to the beginning of the text to be compiled*)
 lastpos := 0; Texts.Read(R, ch); GetSym; syntax;
 Texts.Append(Oberon.Log, W.buf)
 END Compile;

BEGIN Texts.OpenWriter(W)
END EBNF.

4.2. Table-driven Top-down Parsing
The method of recursive descent is only one of several techniques to realize the top-down
parsing principle. Here we shall present another technique: table-driven parsing.

The idea of constructing a general algorithm for top-down parsing for which a specific syntax
is supplied as a parameter is hardly far-fetched. The syntax takes the form of a data structure
which is typically represented as a graph or table. This data structure is then interpreted by
the general parser. If the structure is represented as a graph, we may consider its
interpretation as a traversal of the graph, guided by the source text being parsed.

First, we must determine a data representation of the structural graph. We know that EBNF
contains two repetitive constructs, namely sequences of factors and sequences of terms.
Naturally, they are represented as lists. Every element of the data structure represents a
(terminal) symbol. Hence, every element must be capable of denoting two successors
represented by pointers. We call them next for the next consecutive factor and alt for the next
alternative term. Formulated in the language Oberon, we declare the following data types:

Symbol = POINTER TO SymDesc;
SymDesc = RECORD alt, next: Symbol END

Then formulate this abstract data type for terminal and nonterminal symbols by using
Oberon's type extension feature (Reiser and Wirth, 1992). Records denoting terminal symbols
specify the symbol by the additional attribute sym:

Terminal = POINTER TO TSDesc;
TSDesc = RECORD (SymDesc) sym: INTEGER END

Elements representing a nonterminal symbol contain a reference (pointer) to the data
structure representing that symbol. Out of practical considerations we introduce an indirect
reference: the pointer refers to an additional header element, which in turn refers to the data
structure. The header also contains the name of the structure, that is, of the nonterminal
symbol. Strictly speaking, this addition is unnecessary; its usefulness will become apparent
later.

Nonterminal = POINTER TO NTSDesc;
NTSDesc = RECORD (SymDesc) this: Header END
Header = POINTER TO HDesc;
HDesc = RECORD sym: Symbol; name: ARRAY n OF CHAR END

As an example we choose the following syntax for simple expressions. Figure 4.1 displays the
corresponding data structure as a graph. Horizontal edges are next pointers, vertical edges
are alt pointers.

expression = term {("+" | "-") term}.
term = factor {("*" | "/") factor}.
factor = id | "(" expression ")" .

Now we are in a position to formulate the general parsing algorithm in the form of a concrete
procedure:

 22

PROCEDURE Parsed(hd: Header): BOOLEAN;
 VAR x: Symbol; match: BOOLEAN;
BEGIN x := hd.sym; Texts.WriteString(Wr, hd.name);
 REPEAT
 IF x IS Terminal THEN
 IF x(Terminal).sym = sym THEN match := TRUE; GetSym
 ELSE match := (x = empty)
 END
 ELSE match := Parsed(x(Nonterminal).this)
 END ;
 IF match THEN x := x.next ELSE x := x.alt END
 UNTIL x = NIL;
 RETURN match
END Parsed;

Figure 4.1. Syntax as data structure

The following remarks must be kept in mind:

1. We tacitly assume that terms always are of the form

T = f0 | f1 | ... | fn

where all factors except the last start with a distinct, terminal symbol. Only the last factor
may start with either a terminal or a nonterminal symbol. Under this condition is it possible
to traverse the list of alternatives and in each step to make only a single comparison.

expression

term

+

-

∅

*

/

∅

factor id

()

error

 23

2. The data structure can be derived from the syntax (in EBNF) automatically, that is, by a
program which compiles the syntax.

3. In the procedure above the name of each nonterminal symbol to be recognized is output.
The header element serves precisely this purpose.

4. Empty is a special terminal symbol and element representing the empty sequence. It is
needed to mark the exit of repetitions (loops).

4.3. Bottom-up Parsing
Both the recursive-descent and table-driven parsing shown here are techniques based on the
principle of top-down parsing. The primary goal is to show that the text to be analysed is
derivable from the start symbol. Any nonterminal symbols encountered are considered as
subgoals. The parsing process constructs the syntax tree beginning with the start symbol as
its root, that is, in the top-down direction.

However, it is also possible to proceed according to a complementary principle in the bottom-
up direction. The text is read without pursuit of a specific goal. After each step a test checks
whether the read subsequence corresponds to some sentential construct, that is, the right part
of a production. If this is the case, the read subsequence is replaced by the corresponding
nonterminal symbol. The recognition process again consists of consecutive steps, of which
there are two distinct kinds:

1. Shifting the next input symbol into a stack (shift step),

2. Reducing a stacked sequence of symbols into a single nonterminal symbol according to a
production (reduce step).

Parsing in the bottom-up direction is also called shift-reduce parsing. The syntactic constructs
are built up and then reduced; the syntax tree grows from the bottom to the top (Knuth, 1965;
Aho and Ullman, 1977; Kastens, 1990).

Once again, we demonstrate the process with the example of simple expressions. Let the
syntax be as follows:

E = T | E "+" T. expression
T = F | T "*" F. term
F = id | "(" E ")". factor

and let the sentence to be recognized be x * (y + z). In order to display the process, the
remaining source text is shown to the right, whereas to the left the - initially empty - sequence
of recognized constructs is listed. At the far left, the letters S and R indicate the kind of step
taken

 x * (y + z)
S x * (y + z)
R F * (y + z)
R T * (y + z)
S T* (y + z)
S T*(y + z)
S T*(y + z)
R T*(F + z)
R T*(T + z)
R T*(E + z)
S T*(E+ z)
S T*(E + z)
R T*(E + F)
R T*(E + T)

 24

R T*(E)
S T*(E)
R T*F
R T
R E

At the end, the initial source text is reduced to the start symbol E, which here would better be
called the stop symbol. As mentioned earlier, the intermediate store to the left is a stack.

In analogy to this representation, the process of parsing the same input according to the top-
down principle is shown below. The two kinds of steps are denoted by M (match) and P
(produce, expand). The start symbol is E.

 E x * (y + z)
P T x * (y + z)
P T* F x * (y + z)
P F * F x * (y + z)
P id * F x * (y + z)
M * F * (y + z)
M F (y + z)
P (E) (y + z)
M E) y + z)
P E + T) y + z)
P T + T) y + z)
P F + T) y + z)
P id + T) y + z)
M + T) + z)
M T) z)
P F) z)
P id) z)
M))
M

Evidently, in the bottom-up method the sequence of symbols read is always reduced at its
right end, whereas in the top-down method it is always the leftmost nonterminal symbol which
is expanded. According to Knuth the bottom-up method is therefore called LR-parsing, and the
top-down method LL-parsing. The first L expresses the fact that the text is being read from left
to right. Usually, this denotation is given a parameter k (LL(k), LR(k)). It indicates the extent of
the lookahead being used. We will always implicitly assume k = 1.

Let us briefly return to the bottom-up principle. The concrete problem lies in determining which
kind of step is to be taken next, and, in the case of a reduce step, how many symbols on the
stack are to be involved in the step. This question is not easily answered. We merely state
that in order to guarantee an efficient parsing process, the information on which the decision is
to be based must be present in an appropriately compiled way. Bottom-up parsers always use
tables, that is, data structured in an analogous manner to the table-driven top-down parser
presented above. In addition to the representation of the syntax as a data structure, further
tables are required to allow us to determine the next step in an efficient manner. Bottom-up
parsing is therefore in general more intricate and complex than top-down parsing.

There exist various LR parsing algorithms. They impose different boundary conditions on the
syntax to be processed. The more lenient these conditions are, the more complex the parsing
process. We mention here the SLR (DeRemer, 1971) and LALR (LaLonde et al., 1971)
methods without explaining them in any further detail.

4. 4. Exercises
4.1. Algol 60 contains a multiple assignment of the form v1 := v2 := ... vn := e. It is defined by
the following syntax:

 25

assignment = leftpartlist expression.
leftpartlist = leftpart | leftpartlist leftpart.
leftpart = variable ":=" .
expression = variable | expression "+" variable.
variable = ident | ident "[" expression "]" .

Which is the degree of lookahead necessary to parse this syntax according to the top-down
principle? Propose an alternative syntax for multiple assignments requiring a lookahead of
one symbol only.

4.2. Determine the symbol sets first and follow of the EBNF constructs production, expression,
term, and factor. Using these sets, verify that EBNF is deterministic.

syntax = {production}.
production = id "=" expression "." .
expression = term {"|" term}.
term = factor {factor}.
factor = id | string | "(" expression ")" | "[" expression "]" | "{" expression "}".

id = letter {letter | digit}.
string = """ {character} """.

4.3. Write a parser for EBNF and extend it with statements generating the data structure (for
table-driven parsing) corresponding to the read syntax.

 26

5. Attributed Grammars and Semantics
In attributed grammars certain attributes are associated with individual constructs, that is, with
nonterminal symbols. The symbols are parameterized and represent whole classes of
variants. This serves to simplify the syntax, but is, in practice, indispensible for extending a
parser into a genuine translator (Rechenberg and Mössenböck, 1985). The translation
process is characterized by the association of a (possibly empty) output with every recognition
of a sentential construct. Each syntactic equation (production) is accompanied by additional
rules defining the relationship between the attribute values of the symbols which are reduced,
the attribute values for the resulting nonterminal symbol, and the issued output. We present
three applications for attributes and attribute rules.

5.1. Type rules
As a simple example we shall consider a language featuring several data types. Instead of
specifying separate syntax rules for expressions of each type (as was done in Algol 60), we
define expressions exactly once, and associate the data type T as attribute with every
construct involved. For example, an expression of type T is denoted as exp(T), that is, as exp
with attribute value T. Rules about type compatibility are then regarded as additions to the
individual syntactic equations. For instance, the requirements that both operands of addition
and subtraction must be of the same type, and that the result type is the same as that of the
operands, are specified by such additional attribute rules:

Syntax Attribute rule Context condition

exp(T0) = term(T1) | T0 := T1
 exp(T1) "+" term(T2) | T0 := T1 T1 = T2
 exp(T1) "-" term(T2). T0 := T1 T1 = T2

If operands of the types INTEGER and REAL are to be admissible in mixed expressions, the
rules become more relaxed, but also more complicated:

T0 := if (T1 = INTEGER) & (T2 = INTEGER) then INTEGER else REAL,

T1 = INTEGER or T1 = REAL
T2 = INTEGER or T2 = REAL

Rules about type compatibility are indeed also static in the sense that they can be verified
without execution of the program. Hence, their separation from purely syntactic rules appears
quite arbitrary, and their integration into the syntax in the form of attribute rules is entirely
appropriate. However, we note that attributed grammars obtain a new dimension, if the
possible attribute values (here, types) and their number are not known a priori.

If a syntactic equation contains a repetition, then it is appropriate with regard to attribute rules
to express it with the aid of recursion. In the case of an option, it is best to express the two
cases separately. This is shown by the following example where the two expressions

exp(T0) = term(T1) {"+" term(T2)}. exp(T0) = ["-"] term(T1).

are split into pairs of terms, namely

exp(T0) = term(T1) | exp(T0) = term(T1) |
 exp(T1) "+" term(T2). "-" term(T1).

The type rules associated with a production come into effect whenever a construct
corresponding to the production is recognized. This association is simple to implement in the
case of a recursive descent parser: program statements implementing the attribute rules are
simply interspersed within the parsing statements, and the attributes occur as parameters to
the parser procedures standing for the syntactic constructs (nonterminal symbols). The
procedure for recognizing expressions may serve as a first example to demonstrate this
extension process, where the original parsing procedure serves as the scaffolding:

 27

PROCEDURE expression;
BEGIN term;
 WHILE (sym = "+") OR (sym = "-") DO
 GetSym; term
 END
END expression

is extended to implement its attribute (type) rules:

PROCEDURE expression(VAR typ0: Type);
 VAR typ1, typ2: Type;
BEGIN term(typ1);
 WHILE (sym = "+") OR (sym = "-") DO
 GetSym; term(typ2);
 typ1 := ResType(typ1, typ2)
 END ;
 typ0 := typ1
END expression

5.2. Evaluation rules
As our second example we consider a language consisting of expressions whose factors are
numbers only. It is a short step to extend the parser into a program not only recognizing, but
at the same time also evaluating expressions. We associate with each construct its value
through an attribute called val. In analogy to the type compatibility rules in our previous
example, we now must process evaluation rules while parsing. Thereby we have implicitly
introduced the notion of semantics:

Syntax Attribute rule (semantics)

exp(v0) = term(v1) | v0 := v1
 exp(v1) "+" term(v2) | v0 := v1 + v2
 exp(v1) "-" term(v2). v0 := v1 - v2
term(v0) = factor(v1) | v0 := v1
 term(v1) "*" factor(v2) | v0 := v1 * v2
 term(v1) "/" factor(v2). v0 := v1 / v2
factor(v0) = number(v1) | v0 := v1
 "(" exp(v1) ")". v0 := v1

Here, the attribute is the computed, numeric value of the recognized construct. The necessary
extension of the corresponding parsing procedure leads to the following procedure for
expressions:

PROCEDURE expression(VAR val0: INTEGER);
 VAR val1, val2: INTEGER; op: CHAR;
BEGIN term(val1);
 WHILE (sym = "+") OR (sym = "-") DO
 op : = sym; GetSym; term(val2);
 IF op = "+" THEN val1 : = val1 + val2 ELSE val1 := val1 - val2 END
 END ;
 val0 := val1
END expression

5.3. Translation rules
A third example of the application of attributed grammars exhibits the basic structure of a
compiler. The additional rules associated with a production here do not govern attributes of
symbols, but specify the output (code) issued when the production is applied in the parsing
process. The generation of output may be considered as a side-effect of parsing. Typically,

 28

the output is a sequence of instructions. In this example, the instructions are replaced by
abstract symbols, and their output is specified by the operator put.

Syntax Output rule (semantics)

exp = term -
 exp "+" term put("+")
 exp "-" term. put("-")
term = factor -
 term "*" factor put("*")
 term "/" factor. put("/")
factor = number put(number)
 "(" exp ")". -

As can easily be verified, the sequence of output symbols corresponds to the parsed
expression in postfix notation. The parser has been extended into a translator.

Infix notation Postfix notation

2 + 3 2 3 +
2 * 3 + 4 2 3 * 4 +
2 + 3 * 4 2 3 4 * +
(5 - 4) * (3 + 2) 5 4 - 3 2 + *

The procedure parsing and translating expressions is as follows:

PROCEDURE expression;
 VAR op: CHAR;
BEGIN term;
 WHILE (sym = "+") OR (sym = "-") DO
 op := sym; GetSym; term; put(op)
 END
END expression

When using a table-driven parser, the tables expressing the syntax may easily be extended
also to represent the attribute rules. If the evaluation and translation rules are also contained
in associated tables, one is tempted to speak about a formal definition of the language. The
general, table-driven parser grows into a general, table-driven compiler. This, however, has so
far remained a utopia, but the idea goes back to the 1960s. It is represented schematically by
Figure 5.1.

Figure 5.1. Schema of a general, parametrized compiler.

Ultimately, the basic idea behind every language is that it should serve as a means for
communication. This means that partners must use and understand the same language.
Promoting the ease by which a language can be modified and extended may therefore be
rather counterproductive. Nevertheless, it has become customary to build compilers using
table-driven parsers, and to derive these tables from the syntax automatically with the help of
tools. The semantics are expressed by procedures whose calls are also integrated
automatically into the parser. Compilers thereby not only become bulkier and less efficient
than is warranted, but also much less transparent. The latter property remains one of our
principal concerns, and therefore we shall not pursue this course any further.

Syntax Type rules Semantics

Generic compiler
Program Result

 29

5.4. Exercise
5.1. Extend the program for syntactic analysis of EBNF texts in such a way that it generates
(1) a list of terminal symbols, (2) a list of nonterminal symbols, and (3) for each nonterminal
symbol the sets of its start and follow symbols. Based on these sets, the program is then to
determine whether the given syntax can be parsed top-down with a lookahead of a single
symbol. If this is not so, the program displays the conflicting productions in a suitable way.

Hint: Use Warshall's algorithm (R. W. Floyd, Algorithm 96, Comm. ACM, June 1962).

TYPE matrix = ARRAY [1..n],[1..n] OF BOOLEAN;

PROCEDURE ancestor(VAR m: matrix; n: INTEGER);
(* Initially m[i,j] is TRUE, if individual i is a parent of individual j.
 At completion, m[i,j] is TRUE, if i is an ancestor of j *)
 VAR i, j, k: INTEGER;
BEGIN
 FOR i := 1 TO n DO
 FOR j := 1 TO n DO
 IF m[j, i] THEN
 FOR k := 1 TO n DO
 IF m[i, k] THEN m[j, k] := TRUE END
 END
 END
 END
 END
END ancestor

It may be assumed that the numbers of terminal and nonterminal symbols of the analysed
languages do not exceed a given limit (for example, 32).

 30

6. The Programming Language Oberon-0

In order to avoid getting lost in generalities and abstract theories, we shall build a specific, concrete
compiler, and we explain the various problems that arise during the project. In order to do this, we
must postulate a specific source language.

Of course we must keep this compiler, and therefore also the language, sufficiently simple in order
to remain within the scope of an introductory tutorial. On the other hand, we wish to explain as
many of the fundamental constructs of languages and compilation techniques as possible. Out of
these considerations have grown the boundary conditions for the choice of the language: it must be
simple, yet representative. We have chosen a subset of the language Oberon (Reiser and Wirth,
1992), which is a condensation of its ancestors Modula-2 (Wirth, 1982) and Pascal (Wirth, 1971)
into their essential features. Oberon may be said to be the latest offspring in the tradition of Algol 60
(Naur, 1960). Our subset is called Oberon-0, and it is sufficiently powerful to teach and exercise the
foundations of modern programming methods.

Concerning program structures, Oberon-0 is reasonably well developed. The elementary statement
is the assignment. Composite statements incorporate the concepts of the statement sequence and
conditional and repetitive execution, the latter in the form of the conventional if-. while-, and repeat
statements. Oberon-0 also contains the important concept of the subprogram, represented by the
procedure declaration and the procedure call. Its power mainly rests on the possibility of
parameterizing procedures. In Oberon, we distinguish between value and variable parameters.

With respect to data types, however, Oberon-0 is rather frugal. The only elementary data types are
integers and the logical values, denoted by INTEGER and BOOLEAN. It is thus possible to declare
integer-valued constants and variables, and to construct expressions with arithmetic operators.
Comparisons of expressions yield Boolean values, which can be subjected to logical operations.

The available data structures are the array and the record. They can be nested arbitrarily. Pointers,
however, are omitted.

Procedures represent functional units of statements. It is therefore appropriate to associate the
concept of locality of names with the notion of the procedure. Oberon-0 offers the possibility of
declaring identifiers local to a procedure, that is, in such a way that the identifiers are valid (visible)
only within the procedure itself.

This very brief overview of Oberon-0 is primarily to provide the reader with the context necessary to
understand the subsequent syntax, defined in terms of EBNF.

ident = letter {letter | digit}.
integer = digit {digit}.

selector = {"." ident | "[" expression "]"}.
number = integer.
factor = ident selector | number | "(" expression ")" | "~" factor.
term = factor {("*" | "DIV" | "MOD" | "&") factor}.
SimpleExpression = ["+"|"-"] term {("+"|"-" | "OR") term}.
expression = SimpleExpression
 [("=" | "#" | "<" | "<=" | ">" | ">=") SimpleExpression].

assignment = ident selector ":=" expression.
ActualParameters = "(" [expression {"," expression}] ")" .
ProcedureCall = ident selector [ActualParameters].
IfStatement = "IF" expression "THEN" StatementSequence
 {"ELSIF" expression "THEN" StatementSequence}
 ["ELSE" StatementSequence] "END".
WhileStatement = "WHILE" expression "DO" StatementSequence "END".
RepeatStatement = “REPEAT” Statement Sequence “UNTIL” expression.
statement = [assignment | ProcedureCall | IfStatement | WhileStatement].
StatementSequence = statement {";" statement}.

 31

IdentList = ident {"," ident}.
ArrayType = "ARRAY" expression "OF" type.
FieldList = [IdentList ":" type].
RecordType = "RECORD" FieldList {";" FieldList} "END".
type = ident | ArrayType | RecordType.
FPSection = ["VAR"] IdentList ":" type.
FormalParameters = "(" [FPSection {";" FPSection}] ")".
ProcedureHeading = "PROCEDURE" ident [FormalParameters].
ProcedureBody = declarations ["BEGIN" StatementSequence] "END" ident.
ProcedureDeclaration = ProcedureHeading ";" ProcedureBody.
declarations = ["CONST" {ident "=" expression ";"}]
 ["TYPE" {ident "=" type ";"}]
 ["VAR" {IdentList ":" type ";"}]
 {ProcedureDeclaration ";"}.
module = "MODULE" ident ";" declarations
 ["BEGIN" StatementSequence] "END" ident "." .

The following example of a module may help the reader to appreciate the character of the
language. The module contains various, well-known sample procedures. It also contains calls to
specific, predefined procedures OpenInput, ReadInt, WriteInt, WriteLn, and eot() whose purpose is
evident. Note that every command which asks for input, must start with a call to OpenInput.

MODULE Samples;

PROCEDURE Multiply*;
 VAR x, y, z: INTEGER;
BEGIN OpenInput; ReadInt(x); ReadInt(y); z := 0;
 WHILE x > 0 DO
 IF x MOD 2 = 1 THEN z := z + y END ;
 y := 2*y; x := x DIV 2
 END ;
 WriteInt(x, 4); WriteInt(y, 4); WriteInt(z, 6); WriteLn
END Multiply;

PROCEDURE Divide*;
 VAR x, y, r, q, w: INTEGER;
BEGIN OpenInput; ReadInt(x); ReadInt(y); r := x; q := 0; w := y;
 WHILE w <= r DO w := 2*w END ;
 WHILE w > y DO
 q := 2*q; w := w DIV 2;
 IF w <= r THEN r := r - w; q := q + 1 END
 END ;
 WriteInt(x.4); WriteInt(y, 4); WriteInt(q, 4); WriteInt(r, 4); WriteLn
END Divide;

PROCEDURE Sum*;
 VAR n, s: INTEGER;
BEGIN OpenInput; s:= 0;
 WHILE ~eot() DO ReadInt(n); WriteInt(n, 4); s := s + n END ;
 WriteInt(s, 6); WriteLn
END Sum;

END Samples.

Corresponding commands are:
Samples.Multiply 7 9
Samples.Divide 65 7
Samples.Sum 1 2 3 4 5~

6.1. Exercise
6.1. Determine the code for the computer defined in Chapter 9, generated from the program listed
at the end of this Chapter.

 32

7. A Parser for Oberon-0
7.1. The Scanner
Before starting to develop a parser, we first turn our attention to the design of its scanner. The
scanner has to recognize terminal symbols in the source text. First, we list its vocabulary:

* DIV MOD & + - OR
= # < <= > >= . , :)]
OF THEN DO UNTIL ([~ := ;
END ELSE ELSIF IF WHILE REPEAT
ARRAY RECORD CONST TYPE VAR PROCEDURE BEGIN MODULE

The words written in upper-case letters represent single, terminal symbols, and they are called
reserved words. They must be recognized by the scanner, and therefore cannot be used as
identifiers. In addition to the symbols listed, identifiers and numbers are also treated as terminal
symbols. Therefore the scanner is also responsible for recognizing identifiers and numbers.

It is appropriate to formulate the scanner as a module. In fact, scanners are a classic example of
the use of the module concept. It allows certain details to be hidden from the client, the parser, and
to make accessible (to export) only those features which are relevant to the client. The exported
facilities are summarized in terms of the module's interface definition:

DEFINITION OSS; (*Oberon Subset Scanner*)
 IMPORT Texts;
 CONST IdLen = 16;
 (*symbols*) null = 0; times = 1; div = 3; mod = 4;
 and = 5; plus = 6; minus = 7; or = 8; eql = 9;
 neq = 10; lss = 11; leq = 12; gtr = 13; geq = 14;
 period = 18; int = 21; false = 23; true = 24;
 not = 27; lparen = 28; lbrak = 29;
 ident = 31; if = 32; while = 34;
 repeat = 35;
 comma = 40; colon = 41; becomes = 42; rparen = 44;
 rbrak = 45; then = 47; of = 48; do = 49;
 semicolon = 52; end = 53;
 else = 55; elsif = 56; until = 57;
 array = 60; record = 61; const = 63; type = 64;
 var = 65; procedure = 66; begin = 67; module = 69;
 eof = 70;

 TYPE Ident = ARRAY IdLen OF CHAR;

 VAR val: INTEGER;
 id: Ident;
 error: BOOLEAN;

 PROCEDURE Mark(msg: ARRAY OF CHAR);
 PROCEDURE Get(VAR sym: INTEGER);
 PROCEDURE Init(T: Texts.Text; pos: LONGINT);
END OSS.

The symbols are mapped onto integers. The mapping is defined by a set of constant definitions.
Procedure Mark serves to output diagnostics about errors discovered in the source text. Typically, a
short explanation is written into a log text together with the position of the discovered error.
Procedure Get represents the actual scanner. It delivers for each call the next symbol recognized.
The procedure performs the following tasks:

1. Blanks and line ends are skipped.
2. Reserved words, such as BEGIN and END, are recognized.

 33

3. Sequences of letters and digits starting with a letter, which are not reserved words, are
recognized as identifiers. The parameter sym is given the value ident, and the character
sequence itself is assigned to the global variable id.

4. Sequences of digits are recognized as numbers. The parameter sym is given the value number,
and the number itself is assigned to the global variable val.

5. Combinations of special characters, such as := and <=, are recognized as a symbol.
6. Comments, represented by sequences of arbitrary characters beginning with (* and ending with *)

are skipped.
7. The symbol null is returned, if the scanner reads an illegal character (such as $ or %). The

symbol eof is returned if the end of the text is reached. Neither of these symbols occur in a well-
formed program text.

7.2. The parser
The construction of the parser strictly follows the rules explained in Chapters 3 and 4. However,
before the construction is undertaken, it is necessary to check whether the syntax satisfies the
restricting rules guaranteeing determinism with a lookahead of one symbol. For this purpose, we
first construct the sets of start and follow symbols. They are listed in the following tables.

S First(S)

selector . [*
factor (~ integer ident
term (~ integer ident
SimpleExpression + - (~ integer ident
expression + - (~ integer ident
assignment ident
ProcedureCall ident
statement ident IF WHILE REPEAT *
StatementSequence ident IF WHILE REPEAT *
FieldList ident *
type ident ARRAY RECORD
FPSection ident VAR
FormalParameters (
ProcedureHeading PROCEDURE
ProcedureBody END CONST TYPE VAR PROCEDURE BEGIN
ProcedureDeclaration PROCEDURE
declarations CONST TYPE VAR PROCEDURE *
module MODULE

S Follow(S)
selector * DIV MOD & + - OR = # < <= > >= ,)] := OF THEN DO ;
 END ELSE ELSIF UNTIL
factor * DIV MOD & + - OR = # < <= > >= ,)] OF THEN DO ;
 END ELSE ELSIF UNTIL
term + - OR = # < <= > >= ,)] OF THEN DO ; END ELSE
 ELSIF UNTIL
SimpleExpression = # < <= > >= ,)] OF THEN DO ; END ELSE ELSIF UNTIL
expression ,)] OF THEN DO ; END ELSE ELSIF UNTIL
assignment ; END ELSE ELSIF UNTIL
ProcedureCall ; END ELSE ELSIF UNTIL
statement ; END ELSE ELSIF UNTIL
StatementSequence END ELSE ELSIF UNTIL
FieldList ; END
type) ;
FPSection) ;
FormalParameters ;
ProcedureHeading ;

 34

ProcedureBody ;
ProcedureDeclaration ;
declarations END BEGIN

The subsequent checks of the rules for determinism show that this syntax of Oberon-0 may indeed
be handled by the method of recursive descent using a lookahead of one symbol. A procedure is
constructed corresponding to each nonterminal symbol. Before the procedures are formulated, it is
useful to investigate how they depend on each other. For this purpose we design a dependence
graph (Figure 7.1). Every procedure is represented as a node, and an edge is drawn to all nodes on
which the procedure depends, that is, calls directly or indirectly. Note that some nonterminal
symbols do not occur in this graph, because they are included in other symbols in a trivial way. For
example, ArrayType and RecordType are contained in type only and are therefore not explicitly
drawn. Furthermore we recall that the symbols ident and integer occur as terminal symbols,
because they are treated as such by the scanner.

Figure 7.1. Dependence diagram of parsing procedures

Every loop in the diagram corresponds to a recursion. It is evident that the parser must be
formulated in a language that allows recursive procedures. Furthermore, the diagram reveals how
procedures may possibly be nested. The only procedure which is not called by another procedure is
Module. The structure of the program mirrors this diagram. The parser, like the scanner, is also
formulated as a module.

7.3. Coping with syntactic errors
So far we have considered only the rather simple task of determining whether or not a source text is
well formed according to the underlying syntax. As a side-effect, the parser also recognizes the
structure of the text read. As soon as an inacceptable symbol turns up, the task of the parser is
completed, and the process of syntax analysis is terminated. For practical applications, however,
this proposition is unacceptable. A genuine compiler must indicate an error diagnostic message and
thereafter proceed with the analysis. It is then quite likely that further errors will be detected.
Continuation of parsing after an error detection is, however, possible only under the assumption of
certain hypotheses about the nature of the error. Depending on this assumption, a part of the
subsequent text must be skipped, or certain symbols must be inserted. Such measures are
necessary even when there is no intention of correcting or executing the erroneous source

module

FPsection declarations StatSequence

IdentList type

ProcedureDeclaration

expression

SimpleExpression

term

factor

selector

 35

program. Without an at least partially correct hypothesis, continuation of the parsing process is
futile (Graham and Rhodes, 1975; Rechenberg and Mössenböck, 1985).

The technique of choosing good hypotheses is complicated. It ultimately rests upon heuristics, as
the problem has so far eluded formal treatment. The principal reason for this is that the formal
syntax ignores factors which are essential for the human recognition of a sentence. For instance, a
missing punctuation symbol is a frequent mistake, not only in program texts, but an operator symbol
is seldom omitted in an arithmetic expression. To a parser, however, both kinds of symbols are
syntactic symbols without distinction, whereas to the programmer the semicolon appears as almost
redundant, and a plus symbol as the essence of the expression. This kind of difference must be
taken into account if errors are to be treated sensibly. To summarize, we postulate the following
quality criteria for error handling:

1. As many errors as possible must be detected in a single scan through the text.
2. As few additional assumptions as possible about the language are to be made.
3. Error handling features should not slow down the parser appreciably.
4. The parser program should not grow in size significantly.

We can conclude that error handling strongly depends on a concrete case, and that it can be
described by general rules only with limited success. Nevertheless, there are a few heuristic rules
which seem to have relevance beyond our specific language, Oberon. Notably, they concern the
design of a language just as much as the technique of error treatment. Without doubt, a simple
language structure significantly simplifies error diagnostics, or, in other words, a complicated syntax
complicates error handling unnecessarily.

Let us differentiate between two cases of incorrect text. The first case is where symbols are
missing. This is relatively easy to handle. The parser, recognizing the situation, proceeds by
omitting one or several calls to the scanner. An example is the statement at the end of factor, where
a closing parenthesis is expected. If it is missing, parsing is resumed after emitting an error
message:

IF sym = rparen THEN Get(sym) ELSE Mark(") missing") END

Virtually without exception, only weak symbols are omitted, symbols which are primarily of a
syntactic nature, such as the comma, semicolon and closing symbols. A case of wrong usage is an
equality sign instead of an assignment operator, which is also easily handled.

The second case is where wrong symbols are present. Here it is unavoidable to skip them and to
resume parsing at a later point in the text. In order to facilitate resumption, Oberon features certain
constructs beginning with distinguished symbols which, by their nature, are rarely misused. For
example, a declaration sequence always begins with the symbol CONST, TYPE, VAR, or
PROCEDURE, and a structured statement always begins with IF, WHILE, REPEAT, CASE, and so
on. Such strong symbols are therefore never skipped. They serve as synchronization points in the
text, where parsing can be resumed with a high probability of success. In Oberon's syntax, we
establish four synchronization points, namely in factor, statement, declarations and type. At the
beginning of the corresponding parser procedures symbols are being skipped. The process is
resumed when either a correct start symbol or a strong symbol is read.

PROCEDURE factor;
BEGIN (*sync*)
 IF (sym < int) OR (sym > ident) THEN Mark("ident ?");
 REPEAT Get(sym) UNTIL (sym >= int) & (sym < ident)
 END ;
 ...
END factor;
PROCEDURE StatSequence;
BEGIN (*sync*)
 IF ~((sym = OSS.ident) OR (sym >= OSS.if) & (sym <= OSS.repeat)

 36

 OR (sym >= OSS.semicolon)) THEN Mark("Statement?");
 REPEAT Get(sym) UNTIL (sym = ident) OR (sym >= if)
 END ;
 ...
END StatSequence;

PROCEDURE Type;
BEGIN (*sync*)
 IF (sym # ident) & (sym < array) THEN Mark("type ?");
 REPEAT Get(sym) UNTIL (sym = ident) OR (sym >= array)
 END ;
 ...
END Type;

PROCEDURE declarations;
BEGIN (*sync*)
 IF (sym < const) & (sym # end) THEN Mark("declaration?");
 REPEAT Get(sym) UNTIL (sym >= const) OR (sym = end)
 END ;
 ...
END declarations;

Evidently, a certain ordering among symbols is assumed at this point. This ordering had been
chosen such that the symbols are grouped to allow simple and efficient range tests. Strong symbols
not to be skipped are assigned a high ranking (ordinal number) as shown in the definition of the
scanner's interface.

In general, the rule holds that the parser program is derived from the syntax according to the
recursive descent method and the explained translation rules. If a read symbol does not meet
expectations, an error is indicated by a call of procedure Mark, and analysis is resumed at the next
synchronization point. Frequently, follow-up errors are diagnosed, whose indication may be omitted,
because they are merely consequences of a formerly indicated error. The statement which results
for every synchronization point can be formulated generally as follows:

IF ~(sym IN follow(SYNC)) THEN Mark(msg);
 REPEAT Get(sym) UNTIL sym IN follow(SYNC)
END

where follow(SYNC) denotes the set of symbols which may correctly occur at this point.

In certain cases it is advantageous to depart from the statement derived by this method. An
example is the construct of statement sequence. Instead of

Statement;
WHILE sym = semicolon DO Get(sym); Statement END

we use the formulation
REPEAT (*sync*)
 IF sym < ident THEN Mark("ident?"); ... END ;
 Statement;
 IF sym = semicolon THEN Get(sym)
 ELSIF sym IN follow(StatSequence) THEN Mark("semicolon?")
 END
UNTIL ~(sym IN follow(StatSequence))

This replaces the two calls of Statement by a single call, whereby this call may be replaced by the
procedure body itself, making it unnecessary to declare an explicit procedure. The two tests after
Statement correspond to the legal cases where, after reading the semicolon, either the next
statement is analysed or the sequence terminates. Instead of the condition sym IN
follow(StatSequence) we use a Boolean expression which again makes use of the specifically
chosen ordering of symbols:

(sym >= semicolon) & (sym < if) OR (sym >= array)

 37

The construct above is an example of the general case where a sequence of identical
subconstructs which may be empty (here, statements) are separated by a weak symbol (here,
semicolon). A second, similar case is manifest in the parameter list of procedure calls. The
statement

IF sym = lparen THEN
 Get(sym); expression;
 WHILE sym = comma DO Get(sym); expression END ;
 IF sym = rparen THEN Get(sym) ELSE Mark(") ?") END
END

is being replaced by
IF sym = lparen THEN Get(sym);
 REPEAT expression;
 IF sym = comma THEN Get(sym)
 ELSIF (sym = rparen) OR (sym >= semicolon) THEN Mark(") or , ?")
 END
 UNTIL (sym = rparen) OR (sym >= semicolon)
END

A further case of this kind is the declaration sequence. Instead of
IF sym = const THEN ... END ;
IF sym = type THEN ... END ;
IF sym = var THEN ... END ;

we employ the more liberal formulation
REPEAT
 IF sym = const THEN ... END ;
 IF sym = type THEN ... END ;
 IF sym = var THEN ... END ;
 IF (sym >= const) & (sym <= var) THEN Mark("bad declaration sequence") END
UNTIL (sym # const) & (sym # type) & (sym # var)

The reason for deviating from the previously given method is that declarations in a wrong order (for
example variables before constants) must provoke an error message, but at the same time can be
parsed individually without difficulty. A further, similar case can be found in Type. In all these cases,
it is absolutely mandatory to ensure that the parser can never get caught in the loop. The easiest
way to achieve this is to make sure that in each repetition at least one symbol is being read, that is,
that each path contains at least one call of Get. Thereby, in the worst case, the parser reaches the
end of the source text and stops.

It should now have become clear that there is no such thing as a perfect strategy of error handling
which would translate all correct sentences with great efficiency and also sensibly diagnose all
errors in ill-formed texts. Every strategy will handle certain abstruse sentences in a way that
appears unexpected to its author. The essential characteristics of a good compiler, regardless of
details, are that (1) no sequence of symbols leads to its crash, and (2) frequently encountered
errors are correctly diagnosed and subsequently generate no, or few additional, spurious error
messages. The strategy presented here operates satisfactorily, albeit with possibilities for
improvement. The strategy is remarkable in the sense that the error handling parser is derived
according to a few, simple rules from the straight parser. The rules are augmented by the judicious
choice of a few parameters which are determined by ample experience in the use of the language.

7.4. Exercises
7.1. The scanner uses a linear search of array KeyTab to determine whether or not a sequence of
letters is a key word. As this search occurs very frequently, an improved search method would
certainly result in increased efficiency. Replace the linear search in the array by

1. A binary search in an ordered array.
2. A search in a binary tree.

 38

3. A search of a hash table. Choose the hash function so that at most two comparisons are
necessary to find out whether or not the letter sequence is a key word.

Determine the overall gain in compilation speed for the three solutions.

7.2. Where is the Oberon syntax not LL(1), that is, where is a lookahead of more than one symbol
necessary? Change the syntax in such a way that it satisfies the LL(1) property.

7.3. Extend the scanner in such a way that it accepts real numbers as specified by the Oberon
syntax.

 39

8. Consideration of Context Specified by Declarations
8.1. Declarations
Although programming languages are based on context-free languages in the sense of Chomsky,
they are by no means context free in the ordinary sense of the term. The context sensitivity is
manifest in the fact that every identifier in a program must be declared. Thereby it is associated with
an object of the computing process which carries certain permanent properties. For example, an
identifier is associated with a variable, and this variable has a specific data type as specified in the
identifier's declaration. An identifier occurring in a statement refers to the object specified in its
declaration, and this declaration lies outside the statement. We say that the declaration lies in the
context of the statement.

Consideration of context evidently lies beyond the capability of context-free parsing. In spite of this,
it is easily handled. The context is represented by a data structure which contains an entry for every
declared identifier. This entry associates the identifier with the denoted object and its properties.
The data structure is known by the name symbol table. This term dates back to the times of
assemblers, when identifiers were called symbols. Also, the structure is typically more complex
than a simple array.

The parser will now be extended in such a way that, when parsing a declaration, the symbol table is
suitably augmented. An entry is inserted for every declared identifier. To summarize:

- Every declaration results in a new symbol table entry.
- Every occurrence of an identifier in a statement requires a search of the symbol table in order to

determine the attributes (properties) of the object denoted by the identifier.

A typical attribute is the object's class. It indicates whether the identifier denotes a constant, a
variable, a type or a procedure. A further attribute in all languages with data types is the object's
type.

The simplest form of data structure for representing a set of items is the list. Its major disadvantage
is a relatively slow search process, because it has to be traversed from its root to the desired
element. For the sake of simplicity - data structures are not the topic of this text - we declare the
following data types representing linear lists:

Object = POINTER TO ObjDesc;
ObjDesc = RECORD
 name: Ident;
 class: INTEGER;
 type: Type;
 next: Object;
 val: LONGINT
END

The following declarations are, for example, represented by the list shown in Figure 8.1.
CONST N = 10;
TYPE T = ARRAY N OF INTEGER;
VAR x, y: T

Figure 8.1. Symbol table representing objects with names and attributes.

“N”
Const
Int
10

“T”
Type

“x”
Var
T

“y”
Var
T

NIL

name
class
type
val
next

topScope

 40

For the generation of new entries we introduce the procedure NewObj with the explicit parameter
class, the implied parameter id and the result obj. The procedure checks whether the new identifier
(id) is already present in the list. This would signify a multiple definition and constitute a
programming error. The new entry is appended at the end of the list, so that the list mirrors the
order of the declarations in the source text.

PROCEDURE NewObj(VAR obj: Object; class: INTEGER);
 VAR new, x: Object;
BEGIN x := topScope;
 WHILE (x.next # NIL) & (x.next.name # id) DO x := x.next END ;
 IF x.next = NIL THEN
 NEW(new); new.name := id; new.class := class; new.next := NIL;
 x.next := new; obj := new
 ELSE obj := x.next; Mark("multiple declaration")
 END
END NewObj;

In order to speed up the search process, the list is often replaced by a tree structure. Its advantage
becomes noticeable only with a fairly large number of entries. For structured languages with local
scopes, that is, ranges of visibility of identifiers, the symbol table must be structured accordingly,
and the number of entries in each scope becomes relatively small. Experience shows that as a
result the tree structure yields no substantial benefit over the list, although it requires a more
complicated search process and the presence of three successor pointers per entry instead of one.
Note that the linear ordering of entries must also be recorded, because it is significant in the case of
procedure parameters.

A procedure find serves to access the object with name id. It represents a simple linear search,
proceeding through the list of scopes, and in each scope through the list of objects.

PROCEDURE find(VAR obj: OSG.Object);
 VAR s, x: Object;
BEGIN s := topScope;
 REPEAT x := s.next;
 WHILE (x # NIL) & (x.name # id) DO x := x.next END ;
 s := s.dsc
 UNTIL (x # NIL) OR (s = NIL);
 IF x = NIL THEN x := dummy; OSS.Mark("undef") END ;
 obj := x
END find;

8.2. Entries for data types
In languages featuring data types, their consistency checking is one of the most important tasks of
a compiler. The checks are based on the type attribute recorded in every symbol table entry. Since
data types themselves can be declared, a pointer to the respective type entry appears to be the
obvious solution. However, types may also be specified anonymously, as exemplified by the
following declaration:

VAR a: ARRAY 10 OF INTEGER

The type of variable a has no name. An easy solution to the problem is to introduce a proper data
type in the compiler to represent types as such. Named types then are represented in the symbol
table by an entry of type Object, which in turn refers to an element of type Type.

Type = POINTER TO TypDesc;
TypDesc = RECORD
 form, len: INTEGER;
 fields: Object;
 base: Type
END

The attribute form differentiates between elementary types (INTEGER, BOOLEAN) and structured
types (arrays, records). Further attributes are added according to the individual forms.

 41

Characteristic for arrays are their length (number of elements) and the element type (base). For
records, a list representing the fields must be provided. Its elements are of the class Field. As an
example, Figure 8.2. shows the symbol table resulting from the following declarations:

TYPE R = RECORD f, g: INTEGER END ;
VAR x: INTEGER;
 a: ARRAY 10 OF INTEGER;
 r, s: R;

Figure 8.2. Symbol table representing declared objects.

As far as programming methodology is concerned, it would be preferable to introduce an extended
data type for each class of objects, using a base type with the fields id, type and next only. We
refrain from doing so, not least because all such types would be declared within the same module,
and because the use of a numeric discrimination value (class) instead of individual types avoids the
need for numerous, redundant type guards and thereby increases efficiency. After all, we do not
wish to promote an undue proliferation of data types.

8.3. Data representation at run-time
So far, all aspects of the target computer and its architecture, that is, of the computer for which
code is to be generated, have been ignored, because our sole task was to recognize source text
and to check its compliance with the syntax. However, as soon as the parser is extended into a
compiler, knowledge about the target computer becomes mandatory.

First, we must determine the format in which data are to be represented at run-time in the store.
The choice inherently depends on the target architecture, although this fact is less apparent
because of the similarity of virtually all computers in this respect. Here, we refer to the generally
accepted form of the store as a sequence of individually addressable byte cells, that is, of byte-
oriented memories. Consecutively declared variables are then allocated with monotonically
increasing or decreasing addresses. This is called sequential allocation.

Every computer features certain elementary data types together with corresponding instructions,
such as integer addition and floating-point addition. These types are invariably scalar types, and
they occupy a small number of consecutive memory locations (bytes). In the present language
Oberon-0, there exist only the two basic, scalar data types: INTEGER and BOOLEAN. In the

“R”
Typ
e

“x”
Var

“a”
Var

“r”
Var

“s”
Var
NIL

name
class

type

Rec form
len
fields

Array
10

form
len
base

“f”
Field

“g”
Field
NIL

name
class
next
type Int

 42

computer used here, the former occupies 4 bytes, the latter a single byte. However, in general
every type has a size, and every variable has an address.

These attributes, type.size and obj.adr, are determined when the compiler processes declarations.
The sizes of the elementary types are given by the machine architecture, and corresponding entries
are generated when the compiler is loaded and initialized. For structured, declared types, their size
has to be computed.

The size of an array is its element size multiplied by the number of its elements. The address of an
element is the sum of the array's address and the element's index multiplied by the element size.
Let the following general declarations be given:

TYPE T = ARRAY n OF T0
VAR a: T

Then type size and element address are obtained by the following equations:

size(T) = n * size(T0)
adr(a[x]) = adr(a) + x * size(T0)

For multi-dimensional arrays, the corresponding formulas (see Figure 8.3) are:

TYPE T = ARRAY nk-1, ... , n1, n0 OF T0

size(T) = nk-1 * ... * n1 * n0 * size(T0)

adr(a[xk-1, ... , x1, x0]) = adr(a)
 + xk-1 * nk-2 * ... * n0 * size(T0) + ...
 + x2 * n1 * n0 * size(T0) + x1 * n0 * size(T0) + x0 * size(T0)
= adr(a) + (((... xk-1 * nk-2 + ... + x2) * n1 + x1) * n0 + x0) * size(T0) (Horner schema)

Note that for the computation of the size the array's lengths in all dimensions are known, because
they occur as constants in the program text. However, the index values needed for the computation
of an element's address are typically not known before program execution.

Figure 8.3. Representation of a matrix.

In contrast, for record structures, both type size and field address are known at compile time. Let us
consider the following declarations:

TYPE T = RECORD f0: T0; f1: T1; ... ; fk-1: Tk-1 END
VAR r: T

Then the type's size and the field addresses are computed according to the following formulas:

size(T) = size(T0) + ... + size(Tk-1)
adr(r.fi) = adr(r) + offset(fi)
offset(fi) = size(T0) + ... + size(Ti-1)

Absolute addresses of variables are usually unknown at the time of compilation. All generated
addresses must be considered as relative to a common base address which is given at run-time.
The effective address is then the sum of this base address and the address determined by the
compiler.

a[0]
a[0, 0]
a[0, 1]
a[1]

a[1, 0]
a[1, 1]

 0
 0
 4
 8
 8
12

a: ARRAY 2 OF ARRAY 2 OF INTEGER

 43

If a computer's store is byte-addressed, as is fairly common, a further point must be considered.
Although bytes can be accessed individually, typically a small number of bytes (say 4 or 8) are
transferred from or to memory as a packet, a so-called word. If allocation occurs strictly in
sequential order it is possible that a variable may occupy (parts of) several words (see Figure 8.4),
assuming a size of 2 for integers, 4 for real numbers. But this should definitely be avoided, because
otherwise a variable access would involve several memory accesses, resulting in an appreciable
slowdown. A simple method of overcoming this problem is to round up (or down) each variable's
address to the next multiple of its size. This process is called alignment. The rule holds for
elementary data types. For arrays, the size of their element type is relevant, and for records we
simply round up to the computer's word size. The price of alignment is the loss of some bytes in
memory, which is quite negligible.

Figure 8.4. Alignment in address computation.

The following additions to the parsing procedure for declarations are necessary to generate the
required symbol table entries:

IF sym = type THEN (* "TYPE" ident "=" type *)
 Get(sym);
 WHILE sym = ident DO
 NewObj(obj, Typ); Get(sym);
 IF sym = eql THEN Get(sym) ELSE Mark("= ?") END ;
 Type1(obj.type);
 IF sym = semicolon THEN Get(sym) ELSE Mark("; ?") END
 END
END ;

IF sym = var THEN (* "VAR" ident {"," ident} ":" type *)
 Get(sym);
 WHILE sym = ident DO
 IdentList(Var, first); Type1(tp); obj := first;
 WHILE obj # NIL DO
 obj.type := tp; INC(adr, obj.type.size); obj.val := adr; obj := obj.next
 END ;
 IF sym = semicolon THEN Get(sym) ELSE Mark("; ?") END
 END
END ;

Here, procedure IdentList is used to process an identifier list, and the recursive procedure Type1
serves to compile a type declaration.

PROCEDURE IdentList(class: INTEGER; VAR first: Object);
 VAR obj: Object;
BEGIN
 IF sym = ident THEN
 NewObj(first, class); Get(sym);
 WHILE sym = comma DO
 Get(sym);
 IF sym = ident THEN NewObj(obj, class); Get(sym) ELSE Mark("ident?") END
 END;

VAR a: CHAR; b, c: INTEGER; d: REAL

 3 2 1 0

c b a

 d c 4

 d 8

3 2 1

a 0b

 c 4

 d 8

not aligned, split fields aligned

 44

 IF sym = colon THEN Get(sym) ELSE Mark("no :") END
 END
END IdentList;

PROCEDURE Type1(VAR type: Type);
 VAR n: INTEGER;
 obj, first: Object; tp: Type;
BEGIN type := intType; (*sync*)
 IF (sym # ident) & (sym < array) THEN Mark("ident?");
 REPEAT Get(sym) UNTIL (sym = ident) OR (sym >= array)
 END ;
 IF sym = ident THEN
 find(obj); Get(sym);
 IF obj.class = Typ THEN type := obj.type ELSE Mark("type?") END
 ELSIF sym = array THEN
 Get(sym);
 IF sym = number THEN n := val; Get(sym) ELSE Mark("number?"); n := 1 END ;
 IF sym = of THEN Get(sym) ELSE Mark("OF?") END ;
 Type1(tp); NEW(type); type.form := Array; type.base := tp;
 type.len := n; type.size := type.len * tp.size
 ELSIF sym = record THEN
 Get(sym); NEW(type); type.form := Record; type.size := 0; OpenScope;
 REPEAT
 IF sym = ident THEN
 IdentList(Fld, first); Type1(tp); obj := first;
 WHILE obj # NIL DO
 obj.type := tp; obj.val := type.size; INC(type.size, obj.type.size); obj := obj.next
 END
 END ;
 IF sym = semicolon THEN Get(sym)
 ELSIF sym = ident THEN Mark("no ;")
 END
 UNTIL sym # ident;
 type.fields := topScope.next; CloseScope;
 IF sym = end THEN Get(sym) ELSE Mark("END?") END
 ELSE Mark("ident ?")
 END
END Type1;

The auxiliary procedures OpenScope and CloseScope ensure that the list of record fields is not
intermixed with the list of variables. Every record declaration establishes a new scope of visibility of
field identifiers, as required by the definition of the language Oberon. Note that the list into which
new entries are inserted is rooted in the global variable topScope.

8.4. Exercises
8.1. The scope of identifiers is defined to extend from the place of declaration to the end of the
procedure in which the declaration occurs. What would be necessary to let this range extend from
the beginning to the end of the procedure?

8.2. Consider pointer declarations as defined in Oberon. They specify a type to which the declared
pointer is bound, and this type may occur later in the text. What is necessary to accommodate this
relaxation of the rule that all referenced entities must be declared prior to their use?

 46

9. A RISC-Architecture as Target
It is worth noting that our compiler, up to this point, could be developed without reference to the
target computer for which it is to generate code. But why indeed should the target machine's
structure influence syntactic analysis and error handling? On the contrary, such an influence should
consciously be avoided. As a result, code generation for an arbitrary computer may be added
according to the principle of stepwise refinement to the existing, machine independent parser,
which serves like a scaffolding. Before undertaking this task, however, a specific target architecture
must be selected.

To keep both the resulting compiler reasonably simple and the development clear of details that are
of relevance only for a specific machine and its idiosyncrasies, we postulate an architecture
according to our own choice. Thereby we gain the considerable advantage that it can be tailored to
the needs of the source language. This architecture does exist as a real machine, implemented on
a field-programmable gate array (FPGA), described in full detail as a text in the hardware design
language Verilog. But it is also described by a program called an emulator. A real computer may
then be used to execute this program, forming a virtual machine which interprets the generated
code.

It is not the aim of this text to present the motivations for our choice of the specific virtual
architecture with all its details. This chapter is rather intended to serve as a descriptive manual
consisting of an informal introduction and a semi-formal definition of the computer in the form of the
interpretive program. The emulator may be used in cases where the actual computer is not
available.

In the definition of this computer we intentionally follow closely the line of RISC-architectures. The
acronym RISC stands for reduced instruction set computer, where "reduced" is to be understood as
relative to architectures with large sets of complex instructions, as these were dominant until about
1980. This is obviously not the place to explain the essence of the RISC architecture, nor to
expound on its various advantages. Here it is attractive because of its simplicity and clarity of
concepts, which simplify the description of the instruction set and the choice of instruction
sequences corresponding to specific language constructs. The architecture chosen here is similar
to the one presented by Hennessy and Patterson (1990) under the name DLX. The small deviations
are due to our desire for increased regularity. Among commercial products, the MIPS and ARM
architectures are closest to ours.

9.1. Resources and registers
An architecture defines those aspects of a computer that are relevant to the programmer and the
compiler designer. A computer consists of an arithmetic unit, a control unit and a store. Our
arithmetic unit contains 16 registers R0 – R15, with 32 bits each. The control unit consists of the
instruction register (IR), holding the instruction currently being executed, and the program counter
(PC), holding the address of the instruction to be fetched next (Figure 9.1). Branch instructions to
procedures implicitly use register R15 to store the return address. The memory consists of 32-bit
words, and it is byte-addressed, that is, word addresses are multiples of 4. Furthermore, there are 4
single-bit status registers N, Z, C, and V called the condition codes.

There are three types of instructions and instruction formats. Register instructions operate on
registers only and feed data through the arithmetic-logic unit ALU or through a shifter. Memory
instructions move data between registers and memory. Branch instructions affect the program
counter.

 47

Figure 9.1.Block diagram of the RISC structure

9.2. Register instructions
These appear in two formats. In format F0 the operands are R.b and n (= R.c). In format F1 the
second operand n is not a register, but the constant im. In both formats, the result is assigned to
register R.a.

Fig.9.2. Formats F0 and F1. for register instructions

The operations provided are

0 MOV a, n R.a := n
1 LSL a, b, n R.a := R.b ← n (shift left by n bits)
2 ASR a, b, n R.a := R.b → n (shift right by n bits with sign extension)
3 ROR a, b, n R.a := R.b rot n (rotate right by n bits)
4 AND a, b, n R.a := R.b & n logical operations
5 ANN a, b, n R.a := R.b & ~n
6 IOR a, b, n R.a := R.b or n
7 XOR a, b, n R.a := R.b xor n
8 ADD a, b, n R.a := R.b + n integer arithmetic
9 SUB a, b, n R.a := R.b – n
10 MUL a, b, n R.a := R.a х n
11 DIV a, b, n R.a := R.b div n

The field im is only 16 bits wide. It is extended to a 32-bit word according to the v modifier bit:

v = 0 extend with 16 zeroes

R0 – R15

ALU

Memory

PC

IR

incrementer

decode

a

b c

i

Shifter

adr

00uv a b op c

01uv a b im op

4 4 4 4 4 12

16

F0

F1

 48

v = 1 extend with 16 ones

The four single-bit condition registers are affected as follows. These registers are tested by branch
instructions.

N : = (R.a < 0) (Negative)
Z := (R.a = 0) (Zero)
C := carry out (for addition, subtraction, and comparison)
V := overflow (for signed addition, subtraction, and comparison)

9.3. Memory instructions (format F2)

There are only two instructions accessing memory, load and store. It is a characteristic of the RISC
structure that access to memory is not combined with any other operation. All arithmetic or logical
operations are performed on registers.

LD a, b, off R.a := Mem[R.b + off]
ST a, b, off Mem[R.b + off] := R.a

Fig. 9.3. Format F2 for memory instructions

The modifier bits have the following significance:

u = 0 load, u = 1 store
v = 0: word, v = 1: byte

9.4. Branch instructions (Format F3)

Branch instructions are used to break the sequence of instructions. The next instruction is
designated either by a 24-bit (signed) offset, or by the value of a register, depending on the modifier
bit u. It indicates the length of the jump forward or backward (PC-relative addressing). This offset is
in words, not bytes, as instructions are always one word long.

Bcond off

u = 0 PC := R.c u = 1 PC := PC+1+off
v = 0 no link v = 1 R15 := PC+1

The modifier v determines, whether the current value of PC be stored in register R15 (the link
register). This facility is used for calls to procedures. The value stored is then the return address.
The format is shown in Fig. 4.

Fig. 9.4. Format F3 of branch instructions

The field cond determines, under which conditions the branch is executed. If not, the instruction has
no effect. The selected condition is a logical function of the registers N, Z, C, and V. The following
are available:

code cond condition code cond condition

0000 MI negative (minus) N 1000 PL positive (plus) ~N
0001 EQ equal (zero) Z 1001 NE positive (plus) ~Z

110v cond

4 4

F3

111v cond off F3

c

4

F2 10uv a b off

4 4 4 20

 49

0010 CS carry set C 1010 CC carry clear ~C
0011 VS overflow set V 1011 VC overflow clear ~V
0100 LS less or same ~C|Z 1100 HI high ~(~C|Z)
0101 LT less than N≠V 1101 GE greater or equal ~(N≠V)
0110 LE less or equal (N≠V)|Z 1110 GT greater than ~((N≠V)|Z)
0111 always T 1111 never F

9.5. An Emulator
An emulator of the RISC architecture is a program that simulates it, that interprets RISC
instructions. The program listed below listed below contains procedure Execute. This emulator
describes the entire RISC, only a few facilities are omitted:
1. The condition registers C and V are not considered. C is needed for unsigned arithmetic only.

Conditions CS, CC, VS, VC, LS, and HI are ignored (see table above).
2. Byte access in memory instructions is not considered. (The v-bit is ignored).
3. Negative addresses are reserved for access to input and output devices. This common

technique is called memory mapping, but it is not shown here.

MODULE RISC;
 IMPORT SYSTEM;
 CONST
 MOV = 0; LSL = 1; ASR = 2; ROR = 3; AND = 4; ANN = 5; IOR = 6; XOR = 7;
 ADD = 8; SUB = 9; MUL = 10; Div = 11;

 VAR IR: LONGINT; (*instruction register*)
 PC: LONGINT; (*program counter*)
 N, Z: BOOLEAN; (*condition flags*)
 R: ARRAY 16 OF LONGINT;
 H: LONGINT;

 PROCEDURE Execute*(VAR M: ARRAY OF LONGINT; pc: LONGINT;
 VAR a, b, op, im: LONGINT; (*instruction fields*)
 adr, A, B, C: LONGINT;
 MemSize: LONGINT;
 BEGIN PC := 0; R[13] := pc * 4; R[14] := LEN(M)*4;
 REPEAT (*interpretation cycle*)
 IR := M[PC]; INC(PC);
 a := IR DIV 1000000H MOD 10H;
 b := IR DIV 100000H MOD 10H;
 op := IR DIV 10000H MOD 10H;
 im := IR MOD 10000H;
 IF ~ODD(IR DIV 80000000H) THEN (*~p: register instruction*)
 B := R[b];
 IF ~ODD(IR DIV 40000000H) THEN (*~q*) C := R[IR MOD 10H]
 ELSIF ~ODD(IR DIV 10000000H) THEN (*q&~v*) C := im
 ELSE (*q&v*) C := im + 0FFFF0000H
 END ;
 CASE op OF
 MOV: IF ~ODD(IR DIV 20000000H) THEN A := C ELSE A := H END |
 LSL: A := SYSTEM.LSH(B, C) |
 ASR: A := ASH(B, -C) |
 ROR: A := SYSTEM.ROT(B, -C) |
 AND: A := SYSTEM.VAL(LONGINT, SYSTEM.VAL(SET, B) * SYSTEM.VAL(SET, C)) |
 ANN: A := SYSTEM.VAL(LONGINT, SYSTEM.VAL(SET, B) - SYSTEM.VAL(SET, C)) |
 IOR: A := SYSTEM.VAL(LONGINT, SYSTEM.VAL(SET, B) + SYSTEM.VAL(SET, C)) |
 XOR: A := SYSTEM.VAL(LONGINT, SYSTEM.VAL(SET, B) / SYSTEM.VAL(SET, C)) |
 ADD: A := B + C |
 SUB: A := B - C |
 MUL: A := B * C |
 Div: A := B DIV C; H := B MOD C

 50

 END ;
 R[a] := A; N := A < 0; Z := A = 0
 ELSIF ~ODD(IR DIV 40000000H) THEN (*p & ~q: memory instruction*)
 adr := (R[b] + IR MOD 100000H) DIV 4;
 IF adr >= 0 THEN (*load*) A := M[adr]; R[a] := A; N := A < 0; Z := A = 0
 ELSE (*store*) M[adr] := R[a]
 END
 ELSE (* p & q: branch instruction*)
 IF (a = 0) & N OR (a = 1) & Z OR (a = 5) & N OR (a = 6) & (N OR Z) OR (a = 7) OR
 (a = 8) & ~N OR (a = 9) & ~Z OR (a = 13) & ~N OR (a = 14) & ~(N OR Z) THEN
 IF ODD(IR DIV 10000000H) THEN R[15] := PC * 4 END ;
 IF ODD(IR DIV 20000000H) THEN PC := (PC + (IR MOD 1000000H)) MOD 40000H
 ELSE PC := R[IR MOD 10H] DIV 4
 END
 END
 END
 UNTIL PC = 0
 END Execute;
END RISC.

This design has been implemented on a single field-programmable gate array (FPGA) and is
available on a low-cost Xilinx Spartan-3 development board.

 51

10. Expressions and Assignments

10.1. Straight code generation according to the stack principle
The third example in Chapter 5 showed how to convert an expression from conventional infix
form into its equivalent postfix form. Our ideal computer would be capable of directly
interpreting postfix notation. As also shown, such an ideal computer requires a stack for holding
intermediate results. Such a computer architecture is called a stack architecture.

Computers based on a stack architecture are not in common use. Sets of explicitly addressable
registers are preferred to a stack. Of course, a set of registers can easily be used to emulate a
stack. Its top element is indicated by a global variable representing the register stack index RH
in the compiler. This is feasible, since the number of intermediate results is known at compile
time, and the use of a global variable is justified because the stack constitutes a global
resource.

To derive the program for generating the code corresponding to specific constructs, we first
postulate the desired code patterns. This method will also be successfully employed later for
other constructs beyond expressions and assignments. Let the code for a given construct K be
given by the following table:

K code(K) side effect

ident LDW RH, SB, adr(ident) INC(RH)

number MOV RH, value INC(RH)

(exp) code(exp)

fac0 * fac1 code(fac0) DEC(RH)
 code(fac1)
 MUL RH, RH, RH+1

term0 + term1 code(term0) DEC(RH)
 code(term1)
 ADD RH, RH, RH+1

ident := exp code(exp) DEC(RH)
 STW RH, adr(ident)

To begin, we restrict our attention to simple variables as operands, and we omit selectors for
structured variables. We assume global variables, whose base address shall be present in a
reserved register SB (static base). First, consider the assignment u := x*y + z*w:

Instruction encoding meaning stack stack index RH

LDW R0, SB, x 80D00004 R0 := x x 1
LDW R1, SB, y 81D00008 R1 := y x, y 2
MUL R0, R0, R1 000A0001 R0 := R0*R1 x*y 1
LDW R1, SB, z 81D0000C R1 := z x*y, z 2
LDW R2, SB, w 82D00010 R2 := w x*y, z, w 3
MUL R1, R1, R2 011A0002 R1 := R1 * R2 x*y, z*w 2
ADD R0, R0, R1 00080001 R0 := R0 + R1 x*y + z*w 1
STW R0, SB, u A0D00000 u := R0 - 0

From this it is quite evident how the corresponding parser procedures must be extended. The
following identifiers are used to denote the respective operation codes:

Mov = 0; Lsl = 1; Asr = 2; Ror= 3; And = 4; Ann = 5; Ior = 6; Xor = 7;
Add = 8; Sub = 9; Cmp = 9; Mul = 10; Div = 11;
Ldw = 0; Stw = 2;
PROCEDURE factor;
 VAR obj: Object;

 52

BEGIN
 IF sym = ident THEN find(obj); Get(sym); Put2(Ldw, RH, SB, obj.val); INC(RH)
 ELSIF sym = number THEN Put1(Mov, RH, 0, val); Get(sym); INC(RH)
 ELSIF sym = lparen THEN
 Get(sym); expression;
 IF sym = rparen THEN Get(sym) ELSE Mark(") missing") END
 ELSIF ...
 END
END factor;
PROCEDURE term;
 VAR op: INTEGER;
BEGIN factor;
 WHILE (sym = times) OR (sym = div) DO
 op := sym; Get(sym); factor;
 IF op = times THEN DEC(RH); Put0(Mul, RH-1, RH-1, RH)
 ELSIF op = div THEN DEC(RH); Put0(Div, RH-1, RH-1, RH)
 END
 END
END term;

PROCEDURE SimpleExpression;
 VAR op: INTEGER;
BEGIN
 IF sym = plus THEN Get(sym); term
 ELSIF sym = minus THEN
 Get(sym); term; Put1(Mov, RH+1, 0, 0); Put0(Sub, RH, RH+1, RH)
 ELSE term
 END ;
 WHILE (sym = plus) OR (sym = minus) DO
 op := sym; Get(sym); term;
 IF op = plus THEN DEC(RH); Put0(Add, RH-1, RH-1, RH)
 ELSIF op = minus THEN DEC(RH); Put0(Sub, RH-1, RH-1, RH)
 END
 END
END SimpleExpression;

PROCEDURE Statement;
 VAR obj: Object;
BEGIN
 IF sym = ident THEN
 find(obj); Get(sym);
 IF sym = becomes THEN
 Get(sym); expression; DEC(RH); Put2(Stw, RH, SB, obj.val)
 ELSIF ...
 END
 ELSIF ...
 END
END Statement;

Here we have introduced the generator procedure Put. In fact we use 4 such procedures, one
for each class of instructions, They can be regarded as the counterpart of the scanner
procedure Get. We assume that they deposit an instruction in a global array, using the variable
pc as index denoting the next free location.

PROCEDURE Put0(op, a, b, c: LONGINT);
BEGIN (*emit register-register instruction*)
 code[pc] := ((a*10H + b) * 10H + op) * 10000H + c; INC(pc)
END Put0;

PROCEDURE Put1(op, a, b, im: LONGINT);
BEGIN (*emit register-immediate instruction*)
 IF im < 0 THEN INC(op, 1000H) (*set v bit*) END ;

 53

 code[pc] := (((a+40H) * 10H + b) * 10H + op) * 10000H + (im MOD 10000H); INC(pc)
END Put1;

PROCEDURE Put2(op, a, b, off: LONGINT);
BEGIN (*emit load/store instruction*)
 code[pc] := (((op+8) * 10H + a) * 10H + b) * 100000H + (off MOD 10000H); INC(pc)
END Put2;

PROCEDURE Put3(op, cond, off: LONGINT);
BEGIN (*emit branch instruction*)
 code[pc] := ((op+12) * 10H + cond) * 1000000H + (off MOD 1000000H); INC(pc)
END Put3;

Addresses of variables are indicated in the generated code listed above by simply using their
identifier. In reality, the address values obtained from the symbol table stand in place of the
identifiers. They are offsets to a base address (SB) computed at run time, that is, the offsets are
added to the base address to yield the effective address. This holds not only for our RISC
machine, but is common practice.

10.2. Delayed code generation
Consider as a second example the expression x + 1. According to the scheme presented in
Section 10.1, we obtain the corresponding code

LDW R0, SB, x R0 := x
MOV R1, 1 R1 := 1
ADD R0, R0, R1 R0 := R0 + R1

This shows that the generated code is correct, but certainly not optimal. The flaw lies in the fact
that the constant 1 is loaded into a register, although this is unnecessary, because our
computer features an instruction which lets constants be added immediately to a register
(immediate addressing mode). Evidently some code has been emitted prematurely. The
remedy must be to delay code emission in certain cases until it is definitely known that there is
no better solution. How is such a delayed code generation to be implemented?

In general, the method consists in associating the information which would have been used for
the selection of the emitted code with the resulting syntactic construct. From the principle of
attributed grammars presented in Chapter 5, this information is retained in the form of
attributes. Code generation therefore depends not only on the syntactically reduced symbols,
but also on the values of their attributes. This conceptual extension is reflected by the fact that
parser procedures obtain a result parameter which represents these attributes. Because there
are usually several attributes, a record structure is chosen for these parameters; we call their
type Item (Wirth and Gutknecht, 1992).

In the case of our second example, it is necessary to indicate whether the value of a factor,
term or expression is held (at run time) in a register, as has been the case so far, or whether
the value is a known constant. The latter case will quite likely lead to a later instruction with
immediate mode. It now becomes clear that the attribute must indicate the mode in which the
factor, term or expression is, that is, where the value is stored and how it is to be accessed.
This attribute mode corresponds to the addressing mode of computer instructions, and its
range of possible values depends on the set of addressing modes which the target computer
features. For each addressing mode offered, there is a corresponding item mode. A mode is
also implicitly introduced by object classes. Object classes and item modes partially overlap. In
the case of our RISC architecture, there are only three modes:

Item mode Object class Addressing mode Additional attributes
Var Var Direct a Value in memory at address a
Const Const Immediate a Value is the constant a
Reg - Register r Value held in register R[r]

 54

With this in mind, we declare the data type Item as a record structure with fields mode, type, a
and r. Evidently, the type of the item is also an attribute. It will not be mentioned any further
below, because we shall consider only the single type Integer.

The parser procedures now emerge as functions with result type Item. Programming
considerations, however, suggest to use proper procedures with a result parameter instead of
function procedures.

Item = RECORD
 mode: INTEGER;
 type: Type;
 a, r: LONGINT;
 END

Let us now return to our example to demonstrate the generation of code for the expression x+1.
The process is shown in Figure 10.1. The transformation of a Var-Item into a Reg-Item is
accompanied by the emission of an LDW instruction, and the transformation of a Reg-Item and
a Const-Item into a Reg-Item is accompanied by emitting an ADD instruction with immediate
operand.

Figure 10.1. Generating items and instructions for the expression x+1.

Note the similarity of the two types Item and Object. Both describe objects, but whereas
Objects represent declared, named objects, whose visibility reaches beyond the construct of
their declaration, Items describe objects which are always strictly bound to their syntactic
construct. Therefore, it is strongly recommended not to allocate Items dynamically (in a heap),
but rather to declare them as local parameters and variables.

PROCEDURE factor(VAR x: Item);
BEGIN
 IF sym = ident THEN find(obj); Get(sym); x.mode := obj.class; x.a := obj.adr; x.r := 0
 ELSIF sym = int THEN x.mode := Const; x.a := val; Get(sym)
 ELSIF sym = lparen THEN
 Get(sym); expression(x);
 IF sym = rparen THEN Get(sym) ELSE Mark(") missing") END
 ELSIF ...
 END
END factor;

PROCEDURE term(VAR x: Item);
 VAR y: Item; op: INTEGER;
BEGIN factor(x);
 WHILE (sym >= times) & (sym< = div) DO
 op := sym; Get(sym); factor(y);
 IF op = times THEN MulOp(x, y) ELSIF op = div THEN DivOp(x, y) END
 END
END term;

+ + + +

x x x x1 1 1 1

Var
x

Reg
0

Reg
0

Const
1

Reg
0

 55

PROCEDURE SimpleExpression(VAR x: Item);
 VAR y: Item; op: INTEGER;
BEGIN
 IF sym = plus THEN Get(sym); term(x)
 ELSIF sym = minus THEN Get(sym); term(x); Neg(x)
 ELSE term(x)
 END ;
 WHILE (sym >= plus) & (sym <= minus) DO
 Iop := sym; Get(sym); term(y); AddOp(op, x, y)
 END
END SimpleExpression;

PROCEDURE Statement;
 VAR obj: Object; x, y: Item;
BEGIN
 IF sym = ident THEN
 find(obj); Get(sym); x.mode := obj.class; x.a := obj.adr; x.r := 0;
 IF sym = becomes THEN Get(sym); expression(y); Store(x, y)
 ELSIF ...
 END
 ELSIF ...
 END
END Statement;

The code generating statements are AddOp, Neg, MulOp, DivOp, and Store The principle of
delayed code emission is also used to avoid the emission of arithmetic instructions if the
compiler can perform the operation itself. This is the case when both operands are constants.
The technique is known as constant folding.

PROCEDURE load(VAR x: Item);
 VAR r: INTEGER;
BEGIN (*x.mode # Reg*)
 IF x.mode = Var THEN Put2(Ldw, RH, x.r, x.a)
 ELSIF x.mode = Const THEN Put1(Mov, RH, 0, x.a)
 END ;
 x.mode := Reg; x.r := RH; INC(RH)
END load;

PROCEDURE AddOp(op: INTEGER; VAR x, y: Item);
BEGIN
 IF op = OSS.plus THEN
 IF (x.mode = Const) & (y.mode = Const) THEN x.a := x.a + y.a
 ELSIF y.mode = Const THEN load(x);
 IF y.a # 0 THEN Put1(Add, x.r, x.r, y.a) END
 ELSE load(x); load(y); Put0(Add, RH-2, x.r, y.r); DEC(RH); x.r := RH-1
 END
 ELSE (*op = OSS.minus*)
 IF (x.mode = Const) & (y.mode = Const) THEN x.a := x.a - y.a
 ELSIF y.mode = Const THEN load(x);
 IF y.a # 0 THEN Put1(Sub, x.r, x.r, y.a) END
 ELSE load(x); load(y); Put0(Sub, RH-2, x.r, y.r); DEC(RH); x.r := RH-1
 END
 END AddOp;

PROCEDURE MulOp*(VAR x, y: Item); (* x := x * y *)
BEGIN
 IF (x.mode = Const) & (y.mode = Const) THEN x.a := x.a * y.a
 ELSIF (y.mode = Const) & (y.a = 2) THEN load(x); Put1(Lsl, x.r, x.r, 1)
 ELSIF y.mode = Const THEN load(x); Put1(Mul, x.r, x.r, y.a)
 ELSIF x.mode = Const THEN load(y); Put1(Mul, y.r, y.r, x.a); x.mode := Reg; x.r := y.r
 ELSE load(x); load(y); Put0(Mul, RH-2, x.r, y.r); DEC(RH); x.r := RH-1
 END
END MulOp;

 56

PROCEDURE DivOp*(op: LONGINT; VAR x, y: Item); (* x := x op y *)
BEGIN
 IF op = OSS.div THEN
 IF (x.mode = Const) & (y.mode = Const) THEN
 IF y.a > 0 THEN x.a := x.a DIV y.a ELSE OSS.Mark("bad divisor") END
 ELSIF y.mode = Const THEN
 IF y.a > 0 THEN load(x); Put1(Div, x.r, x.r, y.a) ELSE OSS.Mark("bad divisor") END
 ELSE load(y); load(x); Put0(Div, RH-2, x.r, y.r); DEC(RH); x.r := RH-1
 END
 ELSE (*op = OSS.mod*)
 IF (x.mode = Const) & (y.mode = Const) THEN
 IF y.a > 0 THEN x.a := x.a MOD y.a ELSE OSS.Mark("bad modulus") END
 ELSE load(y);
 load(x); Put0(Div, RH-2, x.r, y.r); Put0(Mov+U, RH-2, 0, 0); DEC(RH); x.r := RH-1
 END
 END DivOp;

So far, only arithmetic expressions are treated, and all operands are of type integer. Therefore,
no type checking is necessary. Type checking is typically performed along with syntactic
analysis. But, whenever arithmetic expressions are evaluated, the inherent danger of overflow
exists. The evaluating statements should therefore be suitably guarded. In the case of addition
guards can be formulated as follows:

IF x.a >= 0 THEN
 IF y.a <= MAX(INTEGER) - x.a THEN x.a := x.a + y.a ELSE Mark("overflow") END
ELSE
 IF y.a >= MIN(INTEGER) - x.a THEN x.a := x.a + y.a ELSE Mark("underflow") END
END

The essence of delayed code generation is that code is not emitted before it is clear that no
better solution exists. For example, an operand is not loaded into a register before this is known
to be unavoidable.

The principle of delayed code generation is also useful in many other cases, but it becomes
indispensible when considering computers with complex addressing modes, for which
reasonably efficient code has to be generated by making good use of the available complex
modes. As an example we consider code emission for a CISC architecture. It typically offers
instructions with two operands, one of them also representing the result. Let us consider the
expression u := x + y*z and obtain the following instruction sequence:

MOV y, R0 R0 := y
MUL z, R0 R0 := R0 * z
ADD x, R0 R0 := R0 + x
MOV R0, u u := R0

This is obtained by delaying the loading of variables until they are to be joined with another
operand. Because the instruction replaces the first operand with the operation's result, the
operation cannot be performed on the variable's original location, but only on an intermediate
location, typically a register. The copy instruction is not issued before this is recognized as
unavoidable. A side effect of this measure is that, for example, the simple assignment x := y
does not transfer via a register at all, but occurs directly through a copy instruction, which both
increases efficiency and decreases code length:

MOV y, x x := y

10.3. Indexed variables and record fields
So far we have considered simple variables only in expressions and assignments. Access to
elements of structured variables, arrays and records, necessitates the selection of the element
according to a computed index or a field identifier, respectively. Syntactically, the variable's
identifier is followed by one or several selectors. This is mirrored in the parser by a call of the
procedure selector within factor and also in statement:

 57

find(obj); Get(sym); x.mode := obj.class; x.a := obj.adr; x.r := 0; selector(x)

Procedure selector processes not only a single selection, but if needed an entire sequence of
selections. The following formulation shows that the attribute type of the operand x is also
relevant.

PROCEDURE selector(VAR x: Item);
 VAR y: Item; obj: Object;
BEGIN
 WHILE (sym = lbrak) OR (sym = period) DO
 IF sym = lbrak THEN
 Get(sym); expression(y); CheckInt(y);
 IF x.type.form = Array THEN Index(x, y); x.type := x.type.base
 ELSE Mark("not an array")
 END ;
 IF sym = rbrak THEN Get(sym) ELSE Mark("] ?") END
 ELSE Get(sym);
 IF sym = ident THEN
 IF x.type.form = Record THEN
 FindField(obj, x.type.fields); Get(sym);
 IF obj # guard THEN Field(x, obj); x.type := obj.type
 ELSE Mark("undef")
 END
 ELSE Mark("not a record")
 END
 ELSE Mark("ident?")
 END
 END
 END
END selector;

The address of the selected element is given by the formulas derived in Section 8.3. In the
case of a field identifier the address computation is performed by the compiler. The address is
the sum of the variable's address and the field's offset.

PROCEDURE Field(VAR x: Item; y: Object); (* x := x.y *)
BEGIN x.a := x.a + y.val; x.type := y.type
END Field;

In the case of an indexed variable, code is emitted according to the formula

adr(a[k]) = adr(a) + k * size(T)

Here a denotes the array variable, k the index, and T the type of the array's elements. An index
computation requires two instructions; the scaled index is added to the register component of
the address. Let the index be stored in register R.j, and let the array address be stored in
register R.i.

MUL R.j, R.j, size(T)
ADD R.i, R.i, R.j

Procedure Index emits the above index code, checks whether the indexed variable is indeed an
array, and computes the element's address directly if the index is a constant. Here we notice
that a new item mode is necessary to represent the case of an indexed variable. Its location is
determined by an offset (x.a) and a register (x.r) holding the index. We call this mode RegI (for
register indirect). In contrast to modes Var and Const it does not stem from a declared object,
but emerges during evaluation (of an indexed variable).

PROCEDURE Index(VAR x, y: Item); (* x := x[y] *)
 VAR z: Item;
BEGIN
 IF y.mode = Const THEN
 IF (y.a < 0) OR (y.a >= x.type.len) THEN Mark("index out of range") END ;
 x.a := x.a + y.a * x.type.base.size

 58

 ELSE
 IF y.mode # Reg THEN load(y) END ;
 Put1(Mul, y.r, y.r, x.type.base.size);
 IF x.mode = Var THEN Put0(Add, y.r, x.r, y.r); x.r := y.r; x.mode := RegI
 ELSIF x.mode = RegI THEN Put0(Add, x.r, x.r, y.r); DEC(RH)
 END
 END
END Index;

In fact, also in mode Var an address register is involved, namely one that holds a base address
(SB). The difference between Var and RegI modes is that in the former the base register x.r
must not be overwritten. We can now show the code resulting from the following program
fragment containing one- and two-dimensional arrays.

VAR i, j: INTEGER; adr 0, 4
 a: ARRAY 4 OF INTEGER; adr 8
 b: ARRAY 3 OF ARRAY 5 OF INTEGER; adr 24

LDW R0, SB, 4 i := a[j]
MUL R0, R0, 4
ADD R0, SB, R0
LDW R0, SB, 8 a
STW R0, SB, 0 i

LDW R0, SB, 16 i := a[2]
STW R0, SB, 0

LDW R0, SB, 0 i := a[i+j];
LDW R1, SB, 4
ADD R0, R0, R1 i+j
MUL R0, R0, 4
ADD R0, SB, R0
LDW R0, R0, 8
STW R0, SB, 0 i

LDW R0, SB, 0 i := b[i][j]
MUL R0, R0, 20
ADD R0, SB, R0
LDW R1, SB, 4 j
MULI R1, R1, 4
ADD R0, R0, R1
LDW R0, R0, 24 b
STW R0, SB, 0 i

LDW R0, SB, 80 i := b[2][4]
STW R0, SB, 0

LDW R0, SB, 0 i := a[a[i]]
MUL R0, R0, 4
ADD R0, SB, R0
LDW R0, R0, 8
MUL R0, R0, 4
ADD R0, SB, R0
LDW R0, R0, 8
STW R0, SB, 0

Note that the validity of the index can be checked only if the index is a constant, that is, it is of
known value. Otherwise the index cannot be checked until run time. Although the test is of
course redundant in correct programs, its omission is not recommended. In order to safeguard
the abstraction of the array structure the test is wholly justified. However, the compiler designer
should attempt to achieve utmost efficiency. The test takes the form of the statement

IF (k < 0) OR (k >= n) THEN HALT END

 59

where k is the index and n the array's length. With our RISC, this is implemented by two
instructions only, a comparison and a trap. The comparison takes advantage of unsigned
arithmetic, where negative values are interpreted as large integers. The trap is represented by
a conditional branch and link instruction. The branch condition is HI = 6, its destination is a fixed
location of a trap routine.

CMP I, k
BL HI, trap

Procedure Index is extended accordingly:

IF y.mode # Reg THEN load(y) END ;
Put1(Cmp, 0, y.r, x.type.base.len);
Put3(15, 6, trap-pc);

Finally, an example of a program is shown with nested data structures. It demonstrates clearly
how the special treatment of constants in selectors simplifies the code for address
computations. Compare the code resulting for variables indexed by expressions with those
indexed by constants. Index range checks have been omitted for the sake of brevity.

 TYPE R0 = RECORD x, y: INTEGER END ;
 R1 = RECORD u: INTEGER; offset 0
 v: ARRAY 4 OF R0; offset 4
 w: INTEGER offset 36
 END ;

 VAR i, j, k: INTEGER; adr 0, 4, 8
 s: ARRAY 2 OF R1; adr 12

LDW R0, SB, 0 k := s[i].u
MUL R0, R0, 40
ADD R0, SB, R0
LDW R0, R0, 12 s[i].u
STW R0, SB, 8 k

LDW R0, SB, 88 k := s[1].w
STW R0, SB, 8

LDW R0, SB, 0 k := s[i].v[j].x
MUL R0, R0, 40
ADD R0, SB, R0
LDW R1, SB, 4 j
MUL R1, R1, 8
ADD R0, R0, R1
LDW R0, R0, 16 s[i].v[j].x
STW R0, SB, 8

LDW R0, SB, 76 k := s[1].v[2].y
STW R0, SB, 8

LDW R0, SB, 0 s[0].v[i].y := k
MUL R0, R0, 8
ADD R0, SB, R0
LDW R1, SB, 8 k
STW R1, R0, 20

The desire to keep target-dependent parts of the compiler separated from target-independent
parts suggests that code generating statements should be collected in the form of procedures
in a separate module. We shall call this module OSG and present its interface. It contains
several of the generator procedures encountered so far. The others will be explained in
Chapters 11 and 12.

DEFINITION OSG;
 IMPORT OSS;

 60

 CONST Head = 0; Var = 1; Par = 2; Const = 3; Fld = 4; Typ = 5
 SProc = 6; SFunc = 7; Proc = 8;
 Boolean = 0; Integer = 1; Array = 2; Record = 3;

 TYPE Object = POINTER TO ObjDesc;
 ObjDesc = RECORD
 class, lev: INTEGER;
 next, dsc: Object;
 type: Type;
 name: OSS.Ident;
 val: LONGINT;
 END ;

 Type = POINTER TO TypeDesc;
 TypeDesc = RECORD
 form: INTEGER;
 fields: Object;
 base: Type;
 size, len: INTEGER;
 END ;

 Item = RECORD
 mode, lev: INTEGER;
 type: Type;
 a: LONGINT;
 END ;

 VAR boolType, intType: Type;
 curlev, pc: INTEGER;

 PROCEDURE FixLink (L: LONGINT);
 PROCEDURE IncLevel (n: INTEGER);
 PROCEDURE MakeConstItem (VAR x: Item; typ: Type; val: LONGINT);
 PROCEDURE MakeItem (VAR x: Item; y: Object);
 PROCEDURE Field (VAR x: Item; y: Object);
 PROCEDURE Index (VAR x, y: Item);
 PROCEDURE Neg (VAR x: Item);
 PROCEDURE AddOp(op: INTEGER; VAR x, y: Item);
 PROCEDURE MulOp(VAR x, y: Item);
 PROCEDURE DivOp(op: INTEGER;VAR x, y: Item);
 PROCEDURE Relation (op: INTEGER; VAR x, y: Item);
 PROCEDURE Store (VAR x, y: Item);

 PROCEDURE Parameter (VAR x: Item; ftyp: Type; class: INTEGER);
 PROCEDURE CJump (VAR x: Item);
 PROCEDURE BJump (L: LONGINT);
 PROCEDURE FJump (VAR L: LONGINT);
 PROCEDURE Call (VAR x: Item);
 PROCEDURE Enter (size: LONGINT);
 PROCEDURE Return (size: LONGINT);
 PROCEDURE Open;
 PROCEDURE Header (size: LONGINT);
 PROCEDURE Close;
END OSG.

10.4. Exercises
10.1. Improve the Oberon-0 compiler in such a way that multiplication and division instructions

are replaced by efficient shift and mask instructions, if a factor or the divisor is a power of 2.

10.2. Had the assignment statement in Oberon been defined in a form where the assigned
expression occurs to the left of the variable, that is for example by the form e =: v, would
compilation of assignments be simpler in any way?

 61

10.3. Consider the introduction of a multiple assignment in Oberon of the form e =: x0 =: x1 =:
... =: xn. Implement it. Does the definition of its semantics present any problems?

10.4. Change the definition of expressions in Oberon to that of Algol 60 (see Exercise 2.1) and
implement the changes. Discuss the advantages and disadvantages of the two forms.

 62

11. Conditional and Repeated Statements and
 Boolean Expressions

11.1. Comparisons and jumps
Conditional and repeated statements are implemented with the aid of branch instructions. As a
first example, let us consider the simplest form of conditional statement:

IF x = y THEN StatSequence END

A possible mapping into a sequence of instructions is straightforward:

IF x = y EQL x, y
 BF L
 THEN StatSequence code(StatSequence)
END L ...

Our considerations are based once again on a stack architecture. Instruction EQL tests the two
operands for equality and replaces them on the stack by the Boolean result. The subsequent
branch instruction BF (branch if FALSE) leads to the destination label L if this result is FALSE,
and removes it from the stack. Similarly to EQL, conditional branch instructions are postulated
for all other relations.

Unfortunately, however, such compiler-friendly computers are hardly widespread. Rather more
common are computers whose branch instructions depend on the comparison of a register
value with 0. We denote them as BNE (branch if not equal), BLT (branch if less than), BGE
(branch if greater or equal), BLE (branch if less or equal), and BGT (branch if greater than). The
code sequence corresponding to the above example is

IF x = y SUB R0, x, y
 BNE R0, L
 THEN StatSequence code(StatSequence)
END L ...

In order to compare two numbers, subtraction is used. A specific comparison instruction is
superfluous. However, we will use the mnemonic CMP, whenever the subtraction is used for
comparison only. The relevant result is deposited in flag registers called condition codes, There
are four flags denoted by N, Z, C, and V, indicating whether the difference is negative or zero
respectively. C represents the carry out bit, and V indicates overflow of signed numbers. All
conditional branch instructions implicitly test this register as argument. In fact, typically all
register instructions have these side-effects on the flags.

IF x = y CMP x, y
 BNE L
 THEN StatSequence code(StatSequence)
END L ...

11.2. Conditional and repeated statements
The question of how a Boolean value is to be represented by an item now arises. In the case of
a stack architecture the answer is easy: since the result of a comparison lies on the stack like
any other result, no special item mode is necessary. The presence of flags, however, requires
further thought. We shall first restrict our consideration to the simple cases of pure comparisons
without further Boolean operators.

In the case of an architecture with a flag scheme, it is necessary to indicate in the resulting item
which relation is specified by the comparison. For the latter a new attribute is required; we call
the new mode Cond and its new attribute (record field) r. The mapping of relations to values of r
is defined by

 63

= 1 # 9
< 5 >= 13
<= 6 > 14

The construct containing comparisons is the expression. Its syntax is

expression = SimpleExpression [("=" | "#" | "<" | "<=" | ">" | ">=") SimpleExpression].

The corresponding, extended parser procedure is easily derived:
PROCEDURE expression(VAR x: Item);
 VAR y: Item; op: INTEGER;
BEGIN SimpleExpression(x);
 IF (sym >= eql) & (sym <= geq) THEN
 op := sym; Get(sym); SimpleExpression(y); Relation(op, x, y)
 END
 x.type := BoolType
END expression;

PROCEDURE Relation(op: INTEGER; VAR x, y: Item);
BEGIN
 IF y.mode = Const THEN load(x); Put1(Cmp, x.r, x.r, y.a); DEC(RH)
 ELSE load(x); load(y); Put0(Cmp, x.r, x.r, y.r); DEC(RH, 2)
 END ;
 SetCC(x, relmap[op - OSS.eql])
END Relation;

 PROCEDURE SetCC(VAR x: Item; n: LONGINT);
 BEGIN x.mode := Cond; x.a := 0; x.b := 0; x.r := n
 END SetCC;

The code scheme presented at the beginning of this chapter yields the corresponding parser
program for handling the IF construct in StatSequence in its simplified form (without ELSE and
ELSIF).

ELSIF sym = if THEN
 Get(sym); expression(x); CFJump(x);
 IF sym = then THEN Get(sym) ELSE Mark("THEN ?") END ;
 StatSequence; Fixup(x.a)
 IF sym = end THEN Get(sym) ELSE Mark("END ?") END

Procedure CFJump(x) generates the necessary branch instruction according to its parameter
x.rc in such a way that the jump is taken if the specified condition is not satisfied.

Here a difficulty becomes apparent which is inherent in all single-pass compilers. The
destination location of branches is still unknown when the instruction is to be emitted. This
problem is solved by adding the location of the branch instruction as an attribute to the item
generated. This attribute is used later when the destination of the jump becomes known in
order to complete the branch with its true address. This is called a fixup. The simple solution is
possible only if code is deposited in a global array where elements are accessible at any time.
It is not applicable if the emitted code is immediately stored on disk. To represent the address
of the incomplete branch instruction we use the item field a.

PROCEDURE CFJump(VAR x: Item); (*conditional branch forward*)
BEGIN Put3(2, negated(x.r), x.a); x.a := pc-1
END CFJump;

PROCEDURE negated(cond: LONGINT): LONGINT;
BEGIN
 IF cond < 8 THEN RETURN cond + 8 ELSE RETURN cond - 8 END
END negated;

PROCEDURE Fixup(L: LONGINT);
BEGIN code[L] := code[L] DIV 1000000H * 1000000H + (pc – L-1) MOD 1000000H
END Fixup;

 64

Note that branch instructions use addresses relative to the instruction's location (PC-relative);
therefore the value pc-L-1 is used.

Finally, we have to show how conditional statements in their general form are compiled; the
syntax is

"IF" expression "THEN" StatSequence
{"ELSIF" expression "THEN" StatSequence}
["ELSE" StatSequence]
"END"

and the corresponding code pattern is

IF expression THEN code(expression)
 Bcond L0
 StatSequence code(StatSequence)
 BR L
ELSIF expression THEN L0 code(expression)
 Bcond L1
 StatSequence code(StatSequence)
 BR L
ELSIF expression THEN L1 code(expression)
 Bcond L2
 StatSequence code(StatSequence)
 BR L
…..

ELSE StatSequence Ln code(StatSequence)
END L ...

from which the parser statements can be derived as part of procedure StatSequence. Although
an arbitrary number of ELSIF constructs can occur and thereby also an arbitrary number of
jump destinations L1, L2, ... may result, a single item variable x suffices. It is assigned a new
value for every ELSIF instance.

ELSIF sym = if THEN
 Get(sym); expression(x); CFJump(x);
 IF sym = then THEN Get(sym) ELSE Mark("THEN ?") END ;
 StatSequence; L := 0;
 WHILE sym = elsif DO
 Get(sym); FJump(L); Fixup(x.a); expression(x); CFJump(x);
 IF sym = then THEN Get(sym) ELSE Mark("THEN ?") END ;
 StatSequence
 END ;
 IF sym = else THEN Get(sym); FJump(L); Fixup(x.a); StatSequence
 ELSE Fixup(x.a)
 END ;
 Fixup(L);
 IF sym = end THEN Get(sym) ELSE Mark("END ?") END
 ...

PROCEDURE FJump(VAR L: LONGINT); (*unconditional branch forward*)
BEGIN Put3(2, 7, L); L := pc-1
END FJump

However, a new situation arises in which not only a single branch refers to the destination label
L at the end, but an entire set, namely as many as there are IF and ELSIF branches in the
statement. The problem is elegantly solved by storing the links of the list of incomplete branch
instructions in these instructions themselves, and to let variable L represent the root of this list.
The links are established by the parameter of the Put operation called in FJump. It suffices to
replace procedure Fixup by FixLink, in which the entire list of instructions to be fixed up is
traversed. It is essential that variable L is declared local to the parser procedure StatSequence,

 65

because statements may be nested, which leads to recursive activation. In this case, several
instances of variable L coexist representing different lists.

PROCEDURE FixLink(L: LONGINT);
 VAR L1: LONGINT;
BEGIN
 WHILE L # 0 DO
 L1 := code[L] MOD 10000H; Fixup(L); L := L1
 END
END FixLink;

Compilation of the WHILE statement is very similar to that of the simple IF statement. In
addition to the conditional forward jump, an unconditional backward jump is necessary. The
syntax and the corresponding code pattern are:

WHILE expression DO L0 code(expression)
 Bcond L1
 StatSequence code(StatSequence)
END BR L0
 L1 ...

From this we derive the corresponding, extended parser procedure:
ELSIF sym = while THEN
 Get(sym); L := pc; expression(x); CFJump(x);
 IF sym = do THEN Get(sym) ELSE Mark("DO ?") END ;
 StatSequence; BJump(L); FixLink(x.a);
 IF sym = end THEN Get(sym) ELSE Mark("END ?") END

PROCEDURE BJump(L: LONGINT); (*unconditional backward jump*)
BEGIN Put3(2, 7, L-pc-1)
END BJump;

Even simpler is the compilation of repeat statements. The corresponding parsing section is
ELSIF sym = repeat THEN
 Get(sym); L := pc; StatSequence;
 IF sym = until THEN Get(sym); expression(x); CBJump(x, L)
 ELSE OSS.Mark("UNTIL ?"); Get(sym)
 END

PROCEDURE CBJump*(VAR x: Item; L: LONGINT); (*conditional backward jump*)
BEGIN Put3(2, negated(x.r), L-pc-1)
END CBJump;

To summarize, we display two statements using variables i and j, together with the generated
code:

IF i < j THEN i := 0 ELSIF i = j THEN i := 1 ELSE i := 2 END ;
WHILE i > 0 DO i := i - 1 END ;
REPEAT i := i – 1 UNTIL i = 0
 0 LDW R0, SB, 4 i
 1 LDW R1, SB, 8 j
 2 CMP R0, R1
 3 BGE 3 (jump over 3 instructions to 7)
 4 MOV R0, 0
 5 STW R0, SB, 4 i := 0
 6 B 9
 7 LDW R0, SB, 4 i
 8 LDW R1, SB, 8 j
 9 CMP R0, R1
 10 BNE 3 (jump over 3 instructions to 14)
 11 MOV R0, 1
 12 STW R0, SB, 4 i := 1

 66

 13 B 2
 14 MOV R0, 2
 15 STW R0, SB, 4 i := 2

 16 LDW R0, SB, 4
 17 CMP R0, R0
 18 BLE 4 (jump over 4 instructions to 23)
 19 LDW R0, SB, 4
 20 SUB R0, R0, 1
 21 STW R0, SB, 4 i := i - 1
 22 BEQ -7 (jump back over 7 instructions to 16)

 23 LDW R0, SB, 4 i
 24 SUB R0, R0, 1
 25 STW R0, SB, 4
 26 LDW R0, SB, 0
 27 CMP R0, 0
 28 BNE -6 (jump back over 6 instructions to 23)

11.3. Boolean operations
It is of course tempting to treat Boolean expressions in the same way as arithmetic
expressions. Unfortunately, however, this would in many cases lead not only to inefficient, but
even to wrong code. The reason lies in the definition of Boolean operators, namely

p OR q = if p then TRUE else q
p & q = if p then q else FALSE

This definition specifies that the second operand q need not be evaluated if the result is
uniquely given by the value of the first operand p. Programming language definitions even go a
step further by specifying that in these cases the second operand must not be evaluated. This
rule is postulated in order that the second operand may be left undefined without causing
program execution to be terminated. A frequent example involving a pointer x is

(x # NIL) & (x^.size > 4)

Here x^.size is undefined, if x = NIL. Boolean expressions with Boolean operators therefore
assume the form of conditional statements (more precisely, conditional expressions), and it is
appropriate to use the same compilation techniques as for conditional statements. Boolean
expressions and conditional statements merge, as the following example shows. The statement

IF (x <= y) & (y < z) THEN S END

is compiled in the same way as its equivalent formulation

IF x <= y THEN IF y < z THEN S END END

With the intention of deriving a suitable code pattern, let us first consider the following
expression containing three relations connected by the & operator. We postulate the desired
code pattern as shown below, considering only the pattern to the left for the moment. a, b, ... , f
denote numeric values. The labels T and F denote the destinations for the cases when the
expression is true or false, respectively.

 (a < b) & (c < d) & (e < f)
CMP a, b CMP a, b
BGE F BGE F
CMP c, d CMP c, d
BGE F BGE F
CMP e, f CMP e, f
BGE F BLT T
(T) (F)

 67

As the left hand pattern shows, a conditional branch instruction is emitted for every & operator.
The jump is executed if the preceding condition is not satisfied (F-jump). This results in the
instructions BGE to represent the < relation, BNE for the = relation, and so on.

If we consider the problem of generating the required code, we can see that the parser
procedure term, as it is known for processing arithmetic terms, must be extended slightly. In
particular, a branch instruction must be emitted before the second operand is processed,
whereas at the end this instruction's address must be fixed up. The former task is performed by
procedure Op1, the latter by Op2.

 PROCEDURE term(VAR x: Item);
 VAR y: Item; op: INTEGER;
 BEGIN factor(x);
 WHILE (sym >= times) & (sym <= and) DO
 op := sym; Get(sym);
 IF op = times THEN factor(y); MulOp(x, y)
 ELSIF (op = div) OR (op = mod) THEN factor(y); DivOp(op, x, y)
 ELSE op = and THEN And(x); factor(y); And2(x, y)
 END
 END term;

PROCEDURE And1(VAR x: Item); (* x := x & *)
BEGIN
 IF x.mode # Cond THEN loadCond(x) END ;
 Put3(BC, negated(x.r), x.a); x.a := pc-1; FixLink(x.b); x.b := 0
END And1;

ROCEDURE And2(VAR x, y: Item); (* x := x & y *)
 BEGIN
 IF y.mode # Cond THEN loadCond(y) END ;
 x.a := merged(y.a, x.a); x.b := y.b; x.r := y.r
END And2;

If the first Boolean factor is represented by item x in mode Cond, then at the present position x
is TRUE and the instructions for the evaluation of the second operand must follow. They must
be skipped, if the condition is FALSE. However, if item x is not in mode Cond, it must be
converted into this mode. This task is executed by procedure loadCond. We assume that the
value FALSE is represented by 0. The attribute value c = 1 therefore causes the instruction
BEQ to become active, if x equals 0.

PROCEDURE loadCond(VAR x: Item);
BEGIN
 IF x.type.form = Const THEN x.r := 15 – 8*x.a;
 ELSE Put1(Cmp, 0, x.r, 0); x.r := 3; DEC(RH)
 END ;
 x.mode := Cond
END loadCond;

The OR operator is treated analogously, with the difference that jumps are taken if their
respective conditions are satisfied (T-jump). The instructions are listed in a second list with links
in the item field b. Consider again the left-hand code pattern only:

(a < b) OR (c < d) OR (e < f)

CMP a, b CMP a, b
BLT T BLT T
CMP c, d CMP c, d
BLT T BLT T
CMP e, f CMP e, f
BLT T BGE F
(F) (T)

Next, we consider the implementation of negation. Here it turns out that under the scheme
presented no instructions need be emitted whatsoever. Only the condition value represented by

 68

the item field c has to be negated, and the lists of F-jumps and T-jumps need be exchanged.
The result of negation is shown in the code patterns in Figures 11.1 and 11.2 on the right-hand
side for both expressions with & and OR operators. The affected procedures are extended as
shown below:

PROCEDURE SimpleExpression(VAR x: Item);
 VAR y: Item; op: INTEGER;
BEGIN term(x);
 WHILE (sym >= plus) & (sym <= or) DO
 op := sym; Get(sym);
 IF op = or THEN Or1(x); tern(y); Or2(x, y)
 ELSE term(y); AddOp(op, x, y)
 END
 END
END SimpleExpression;

PROCEDURE Or1(VAR x: Item); (* x := x OR *)
BEGIN
 IF x.mode # Cond THEN loadCond(x) END ;
 Put3(BC, x.r, x.b); x.b := pc-1; FixLink(x.a); x.a := 0
END Or1;

PROCEDURE Or2(VAR x, y: Item);
BEGIN
 IF y.mode # Cond THEN loadCond(y) END ;
 x.a := y.a; x.b := merged(y.b, x.b); x.r := y.r
END Or2;

When compiling expressions with & and OR operators, care must be taken that in front of every
& condition P, and in front of every OR condition ~P, must hold. The respective lists of jump
instructions must be traversed (the T-list for &, the F-list for OR), and the designated
instructions must be fixed up appropriately. This occurs through procedure calls of FixLink in
Op1. As examples, we consider the expressions

 (a < b) & (c < d)) OR ((e < f) & (g < h)
 (a < b) OR (c < d)) & ((e < f) OR (g < h)

and the resulting codes:
 CMP a, b CMP a, b
 BGE F0 BLT T0
 CMP c, d CMP c, d
 BLT T BGE F

F0 CMP e, f T0 CMP e, f
 BGE F BLT T
 CMP g, h CMP g, h
 BGE F BGE F
 (T) (T)

It may also happen that a list of a subordinate expression may merge with the list of its
containing expression (see F-link in the pattern for Q).. This merger is accomplished by
procedure merged(a, b), yielding as its value the concatenation of its argument lists.

11.4. Assignments to Boolean variables
Compilation of an assignment to a Boolean variable q is certainly more complicated than
commonly expected. The reason is the item mode Cond, which must be converted into an
assignable value 0 or 1. This is achieved by the following code pattern:

T MOV R0, 1
 B L
F MOV R0, 0

 69

L STW R0, SB, q

This causes the simple assignment q := x < y to appear as a disappointingly long code
sequence. We should, however, be aware that Boolean variables (commonly called flags) occur
(should occur) infrequently, although the notion of the type Boolean is indeed fundamental. It is
inappropriate to strive for optimal implementation of rarely occurring constructs at the price of
an intricate process. On the other hand, it is essential that the frequent cases are handled
optimally.

Nevertheless, we handle assignments of a Boolean item not in the Cond mode as a special
case, namely as a conventional assignment avoiding the involvement of jumps. Hence, the
assignment p := q results in the expected code sequence

LDW R0, SB, q
STW R0, SB, p

As a consequence, the procedures load and Store turn out as follows (see also Ch. 10):

 PROCEDURE load(VAR x: Item);
 BEGIN
 IF x.mode # Reg THEN
 IF x.mode = Var THEN Put2(Ldw, R, x.r, x.a); INC(R)
 …..
 ELSIF x.mode = RegI THEN Put2(Ldw, R, x.r, x.a)
 ELSIF x.mode = Cond THEN
 Put3(2, negated(x.r), 2);
 FixLink(x.b); Put1(Mov, R, 0, 1); Put3(2, 7, 1);
 FixLink(x.a); Put1(Mov, R, 0, 0); incR
 END ;
 x.mode := Reg; x.r := RH-1; x.a := 0; x.b := 0
 END
 END load;

PROCEDURE Store(VAR x, y: Item); (* x := y *)
BEGIN ...
 IF y.mode # Reg THEN load(y) END ;
 IF x.mode = Var THEN Put2(Stw, y.r, x.r, x.a); DEC(R)
 ELSIF x.mode = RegI THEN Put2(Stw, y.r, x.r, x.a); DEC(RH, 2)
 ELSE Mark("illegal assignment")
 END
END Store;

11.5. Exercises
11.1. Mutate the language Oberon-0 into a variant Oberon-D by redefining the conditional and
the repeated statement as follows:

statement = ...
 "IF" guardedStatements {"|" guardedStatements} "FI" |
 "DO" guardedStatements {"|" guardedStatements} "OD" .
guardedStatements = condition "." statement {";" statement} .

The new form of statement

IF B0 . S0 | B1 . S1 | ... | Bn . Sn FI

shall mean that of all conditions (Boolean expressions) Bi that are true, one is selected
arbitrarily and its corresponding statement sequence Si is executed. If none is true, program
execution is aborted. Any statement sequence Si will be executed only when the corresponding
condition Bi is true. Bi is therefore said to be the guard of Si.

 70

The statement

DO B0 . S0 | B1 . S1 | ... | Bn . Sn OD

shall mean that that as long as any of the conditions Bi is true, one of them is chosen arbitrarily,
and its corresponding statement sequence Si is executed. The process terminates as soon as
all Bi are false. Here too, the Bi function as guards. The DO-OD construct is a repetitive,
nondeterministic construct. Adjust the compiler accordingly.

11.2. Extend Oberon-0 and its compiler by a FOR statement:

statement = [assignment | ProcedureCall |
 IfStatement | WhileStatement | ForStatement.
ForStatement = "FOR" identifier ":=" expression "TO" expression ["BY" expression]
 "DO" StatementSequence "END" .

The expression preceding the symbol TO specifies the starting value, the one thereafter the
ending value of the control variable denoted by the identifier. The expression after BY indicates
the increment. If missing, let 1 be its default value.

11.3. Consider the implementation of the case statement of Oberon. Its essential property is
that it uses a table of jump addresses for the various cases, and an indexed jump instruction.

 71

12. Procedures and the Concept of Locality

12.1. Run-time organization of the store
Procedures, which are also known as subroutines, are perhaps the most important tool for
structuring programs. Because of their frequency of occurrence, it is mandatory that their
implementation is efficient. Implementation is based on the branch instruction which saves the
current PC value and thereby the point of return after termination of the procedure, when this
value is reloaded into the PC register.

The question as to where the return address should be saved arises immediately. In many
computers it is deposited in a register (here called LNK), and we have adopted this solution in
our RISC. A call is therefore implemented by a single branch and link (BL) instruction, and the
return at the end of the procedure by a single branch with LNK as source. This guarantees the
utmost efficiency, because no additional memory access is involved. But having to save the
register's value into memory before the next procedure call is unavoidable, because otherwise
the old return address would be overwritten. Thereby the return address of the first call would
be lost. In the implementation of a compiler this link register value must be saved at the
beginning of each procedure call.

To store the link, a stack is the obvious solution. The reason is that procedure activations occur
in a nested fashion; procedures terminate in the reverse order of their calls. The store for the
return addresses must therefore operate according to the first-in last-out principle. This results
in the following, fixed code sequences at the beginning and end of every procedure. They are
called the procedure's prologue and epilogue. Here we will use R14 for the stack pointer SP

Call BL P branch and link to subroutine

Prologue P SUB SP, SP, 4
 STW LNK, SP, 0 push link

Epilogue LDW LNK, SP, 0 pop link
 ADD SP, SP, 4
 B LNK return jump

This code pattern is valid under the assumption that the BL instruction deposits the return
address in register LNK (here R15). Note that this is specified as a hardware feature (Chapter
9), whereas the use of R14 as stack pointer is merely a software convention determined by the
compiler design or by the underlying operating system. Whenever the system is started, R14
must be initialized to point to an area of memory reserved for the stack.

Algol 60 introduced the very fundamental concept of local variables. It implied that every
identifier declared had a limited range of visibility and validity. Adopted in Pascal and also in
Oberon, this range is the procedure body. In concrete terms, variables may be declared local to
a procedure such that they are visible and valid within this procedure only. The intended
consequence is that upon entry to the procedure memory is allocated automatically for these
local variables, and it is released upon the procedure's termination. Local variables of different
procedures may therefore share the same storage area, but never simultaneously, of course.

At first sight this scheme seems to inflict a certain loss of efficiency upon the procedure call
mechanism. Fortunately, however, this need not be so, because the storage blocks for the sets
of local variables can be allocated, like return addresses, according to the stack principle. The
return address may indeed also be considered as a (hidden) local variable, and it is only natural
to use the same stack for variables and return addresses. The stack pointer is incremented by
the size of the variable block instead of by 4. The storage blocks are called procedure
activation records or activation frames. Release of a block upon procedure termination is
achieved by simply resetting the stack pointer to its value before the procedure call. Hence,
allocation and release of local storage is optimally efficient.

 72

Addresses of local variables generated by the compiler are always relative to the base address
of the respective activation frame. Since in programs most variables are local, their addressing
also must be highly efficient. This is achieved by reserving a register to hold the base address,
and to make use of the fact that the effective address is the sum of a register value and the
instruction's address field (register relative addressing mode). The reserved register is called
the frame pointer (FP). This scheme makes it possible to call procedures recursively. These
considerations are taken into account by the following prologue and epilogue:

Prolog P SUB SP, SP, n+8 SP := SP-(n+8) (n = frame size)
 STW LNK, SP, n+4 push return adr
 STW FP, SP, n push FP
 ADD FP, SP, n FP := SP+n

Epilog ADD SP, FP, 8 reset SP
 LDW LNK, FP, 4 pop return adr

LDW FP, FP, 0 pop FP
B LNK return jump

The activation frames resulting from consecutive procedure calls are linked by a list of their
base addresses. The list is called the dynamic link, because it denotes the dynamic sequence
of procedure activations. Its root lies in the frame pointer register FP (see Figure 12.1).

Figure 12.1. List of activation frames in the stack.

The state of the stack before and after a procedure call is shown in Figure 12.2. Note that the
epilogue reverts the stack to its original state by removing return address and dynamic link
entry.

Figure 12.2. States of the stack before and after procedure call.

Frame

Frame

Frame

SP

FP

Frame
SP

FP

Frame
SP

FP

Frame

ret adr

call + prologue

epilogue + return

 73

12.2. Addressing of variables
We recall that the address of a local variable is relative to the base address of the activation
frame containing the variable, and that this base address is held in register FP. The latter,
however, holds only for the record activated last, and thereby only for variables which belong to
the procedure in which they are referenced. In many programming languages procedure
declarations may be nested, giving rise to references to variables which are local to some
procedure, but not to the procedure referencing them. The following example demonstrates the
situation, with R being local to Q, and Q and S local to P:

 Object Level

PROCEDURE P; P 0
 VAR x: INTEGER; x 1

 PROCEDURE Q; Q 1
 VAR y: INTEGER; y 2

 PROCEDURE R; R 2
 VAR z: INTEGER; z 3
 BEGIN x := y + z
 END R;

 BEGIN R
 END Q ;

 PROCEDURE S; S 1
 BEGIN Q
 END S;

BEGIN Q; S
END P;

Let us trace the chain of calls P → Q → R. It is tempting to believe that, when accessing
variables x, y, or z in R, their base address could be obtained by traversing the dynamic link list.
The number of steps would be the difference between the levels of the call and of the
declaration. This difference is 2 for x, 1 for y, and 0 for z. But this assumption is wrong. R could
also be reached through the call sequence P → S → Q → R as shown in Figure 12.3. Access
to x would then lead in two steps to the activation frame of S instead of P.

Evidently, a second list of activation records is necessary which mirrors the static order of
nesting rather than the dynamic order of calls. Hence a second link must be established upon
every procedure call. The so-called procedure mark now contains, in addition to the return
address and the dynamic link, a static link element. The static link of a procedure P points to
the activation record of the procedure which contains P, that is, in which P is declared locally. It
should be noted that this pointer is superfluous for procedures declared globally, if global
variables are addressed directly, that is, without base address. Since this is typically the case,
and since most procedures are declared globally, the additional complexity caused by the static
chain is acceptable. With some justification the absolute addressing of global variables can be
considered as a special case of local variable addressing leading to an increase in efficiency.

 74

Figure 12.3. Dynamic and static links in the stack.

Finally, note that access to variables via the static link list (intermediate level variables) is less
efficient than access to strictly local variables, because every step through the list requires an
additional memory access. Several solutions have been proposed and implemented to
eliminate this loss of efficiency. They ultimately always rely on the mapping of the static list onto
a set of base registers. We consider this as an optimization at the wrong place. First, registers
are scarce resources which should not be given away too easily. And second, the copying of
link elements into registers upon every call and return may easily cost more than it saves, in
particular because references to intermediate-level variables occur quite rarely in practice. The
optimization may therefore turn out to be quite the reverse.

In fact, programming experience has shown that the access of intermediate level variables is
bad practice and better be avoided. Implementers must welcome this insight, as it makes the
static link superfluous. If in addition we renounce the allocation on the stack of objects whose
size is unknown at compile-time (such as dynamic array parameters in Algol), we can even omit
the dynamic link. This because the amounts by which the stack pointer is to be decreased and
increased are known by the compiler and can be inserted explicitly in the code. This makes a
frame pointer superfluous and leads to a significant simplification and speedup of prolog and
epilog: Variables are addressed with SP as the base register, and with positive offsets.

Prolog P SUB SP, SP, n+4 SP := SP-(n+4) (n = frame size)
 STW LNK, SP, 0 push link

Epilog LDW LNK, SP, 0 pop link
 ADD SP, SP, n+4
 B LNK return jump

This is the scheme implemented in the Oberon-0 compiler. The handling of intermediate-level
variables is not implemented.

Global variables have fixed addresses which must also be considered relative to a frame
address. Their absolute values are determined upon loading the code, that is, after compilation
but before program execution. The emitted object code can therefore be accompanied by a list
of addresses of instructions referring to global variables. The loader must then add to these
addresses the base address of the respective frame of global variables. This fixup operation
can be omitted if the computer features the program counter as an address register. This is the
case for example for the ARM architecture, but not in our RISC.

12.3. Parameters
Parameters constitute the interface between the calling and the called procedures. Parameters
on the calling side are said to be actual parameters, and those on the called side formal
parameters. The latter are in fact only place holders for which the actual parameters are
substituted. Basically, a substitution is an assignment of the actual value to the formal variable.

R

Q

S

P

static
link

dynamic
link

 75

This implies that every formal parameter be represented by a variable bound to the procedure,
and that every call be accompanied by a number of assignments called parameter
substitutions.

Most programming languages distinguish between at least two kinds of parameters. The first is
the value parameter where, as its name suggests, the value of the actual parameter is
assigned to the formal variable. The actual parameter is syntactically an expression. The
second kind of parameter is the reference parameter, where, also as suggested by its name, a
reference to the actual parameter is assigned to the formal variable. Evidently, the actual
parameter must in this case be a variable, because an assignment to the formal parameter is
permissible, and this assignment must refer to the actual variable. (In Pascal, Modula, and
Oberon, the reference parameter is therefore called variable parameter). The value of the
formal variable is in this case a hidden pointer, that is, an address.

Of course, the actual parameter must be evaluated before the substitution takes place. In the
case of variable parameters, the evaluation takes the form of an identification of the variable,
implying, for example, the evaluation of the index in the case of indexed variables. But how is
the destination of this substitution to be determined? Here the stack organization of the store
comes into play. The actual values are simply deposited in sequence on the top of the stack; no
explicit destination addresses are required. Figure 12.4 shows the state of the stack after the
deposition of the parameters, and after the call and the prologue.

Figure 12.4. Parameter allocation.

It now becomes evident that parameters can be addressed relative to the frame address FP,
like local variables. If local variables have negative offsets, parameters have positive offsets. It
is particularly worth noting that the called procedure references parameters exactly where they
were deposited by the calling procedure. The space allocated for the parameters is regained by
the epilogue simply by carefully adjusting the value of SP.

In the case of computers with a large bank of registers, such as our RISC, a different scheme is
available, namely to pass the parameters in these registers. The advantage is that code for
depositing the parameters in memory exists only once, namely in the procedure’s prolog. In the
technique described earlier, code for storing occurs with each call. The drawback is that the
number of parameters is limited (by the number of available registers). It is, however, poor
programming practice to declare procedures with a large number of parameters. Thus this
restriction is not one to be deplored. In memory, the parameters then simply precede the local
variables.

12.4. Procedure declarations and calls

parameters parameters

ret adr

local
variables

SP

SP

FP

SP

call return

 76

The procedure for processing procedure declarations is easily derived from the syntax with the
aid of the parser construction rules. The new entry in the symbol table generated for a
procedure declaration obtains the class attribute Proc, and its attribute a is given the current
value of pc, which is the entry address of the procedure's prologue. Thereafter, a new scope is
opened in the symbol table in such a way that (1) new entries for local objects are automatically
inserted in the new scope, and (2) at the end of the procedure the local objects are easily
discarded and the previous scope reappears. Here too, the two procedures OpenScope and
CloseScope embody the stack principle, and the linkage is established by a header element
(class Head, field dsc). Objects are given an additional attribute lev denoting the nesting level
of the declared object. Consider the following declarations:

CONST N = 10;
VAR x: T;
PROCEDURE P(x, y: INTEGER); ...

The resulting symbol table is shown in Figure 12.5. The dsc pointer refers to P's parameters x
and y. Because of the two kind of parameters, it is necessary to introduce a new object-kind
and item-mode. Var denotes variables and value parameters, the new Par denotes variable
parameters. Value parameters are treated like local variables (class Var).

Figure 12.5. Symbol table representing two scopes.

PROCEDURE ProcedureDecl;
 VAR proc, obj: Object;
 procid: Ident;
 locblksize, parblksize: LONGINT;

 PROCEDURE FPSection;
 VAR obj, first: Object; tp: Type; parsize: LONGINT;
 BEGIN
 IF sym = var THEN Get(sym); IdentList(Par, first) ELSE IdentList(Var, first) END ;
 IF sym = ident THEN
 find(obj); Get(sym);
 IF obj.class = Typ THEN tp := obj.type ELSE Mark("type?"); tp := intType END
 ELSE Mark("ident?"); tp := intType
 END ;
 IF first.class = Var THEN parsize := tp.size ELSE parsize := 4 END ;
 obj := first;
 WHILE obj # guard DO
 obj.type := tp; obj.val := parblksize; obj.isparam := TRUE;

Head

x
Var
Int
12

y
Var
Int
8
guard

name
class
type
val
next
dsc

Head N
Const
Int
10

x
Var
T

P
Proc
none
adr
guard

name
class
type
val
next
dsc

Scope

level k

level k+1

 77

 INC(parblksize, parsize); obj := obj.next
 END
 END
 END FPSection;

BEGIN (* ProcedureDecl *) Get(sym);
 IF sym = ident THEN
 procid := id;
 NewObj(proc, Proc); Get(sym); parblksize := 4;
 INC(level); OpenScope; proc.val := -1;
 IF sym = lparen THEN Get(sym);
 IF sym = rparen THEN Get(sym)
 ELSE FPSection;
 WHILE sym = semicolon DO Get(sym); FPSection END ;
 IF sym = rparen THEN Get(sym) ELSE Mark(")?") END
 END
 END ;
 locblksize := parblksize; proc.dsc := topScope.next;
 IF sym = semicolon THEN Get(sym) ELSE Mark(";?") END;
 declarations(locblksize);
 WHILE sym = procedure DO
 ProcedureDecl;
 IF sym = semicolon THEN Get(sym) ELSE Mark(";?") END
 END ;
 proc.val := pc; Enter(parblksize, locblksize);
 IF sym = begin THEN Get(sym); StatSequence END ;
 IF sym = end THEN Get(sym) ELSE Mark("END?") END ;
 IF sym = ident THEN
 IF procid # id THEN Mark("no match") END ;
 Get(sym)
 ELSE Mark("ident?")
 END ;
 Return(locblksize - 8); CloseScope; DEC(level)
 END
END ProcedureDecl;

In the case of byte-addressed stores it is advantageous always to increment or decrement the
stack pointer by multiples of 4, such that parameters are always aligned to word boundaries. In
the case of Oberon-0 special attention to this rule is unnecessary, because all data types
feature a size of multiples of 4 anyway.

Local declarations are processed by the parser procedure declarations. The code for the
prologue is emitted by procedure Enter after the processing of local declarations. Emission of
the epilogue is performed by procedure Return at the end of ProcedureDecl.

PROCEDURE Enter(parblksize, locblksize: LONGINT);
BEGIN a := 4; r := 0;
 Put1(SUB, SP, SP, locblksize); Put2(Stw, LNK, SP, 0);
 WHILE a < parblksize DO Put2(Stw, r, SP, a); INC(R); INC(a, 4) END
 (*store parameters from R0, R1, … *)
END Enter;

PROCEDURE Return(size: LONGINT);
BEGIN
 Put2(Ldw, LNK, SP, 0); Put1(Add, SP, SP, size); Put3(0, 7, LNK)
END Return;

Procedure MakeItem converts a given object into a corresponding Item. At this point, the
difference between the addressing of local and global variables must be taken into account. (As
already mentioned, the handling of intermediate-level variables is not treated here.)

PROCEDURE MakeItem(VAR x: Item; y: Object);
 VAR r: LONGINT;

 78

BEGIN x.mode := y.class; x.type := y.type; x.a := y.val;
 IF y.lev = 0 THEN x.r := SB ELSIF y.lev = curlev THEN x.r := SP
 ELSE Mark("level!"); x.r := 0
 END
END MakeItem;

Procedure calls are generated within the already encountered procedure StatSequence with
the aid of auxiliary procedures Parameter and Call: The former calls on load (which is extended
by the case for mode Par) and loadAdr, necessary for variable parameters. Similar addition are
necessary in procedure Store.

IF sym = ident THEN
 find(obj); Get(sym); MakeItem(x, obj); selector(x);
 IF sym = becomes THEN …

 ELSIF x.mode = Proc THEN
 par := obj.dsc;
 IF sym = lparen THEN Get(sym);
 IF sym = rparen THEN Get(sym)
 ELSE
 LOOP expression(y);
 IF par.isparam THEN
 IF y.type = par.type THEN Parameter(y, par.class)
 ELSE Mark(“bad param type”)
 END ;
 par := par.next
 ELSE Mark(“too many parameters”)
 END ;
 IF sym = comma THEN Get(sym)
 ELSIF sym = rparen THEN Get(sym); EXIT
 ELSIF sym >= semicolon THEN Mark(") ?"); EXIT
 ELSE Mark(") or , ?")
 END
 END
 END
 END ;
 IF obj.val < 0 THEN Mark("forward call")
 ELSE Call(x);
 IF par.isparam THEN Mark("too few parameters") END
 END
 ...

PROCEDURE Parameter(VAR x: Item; class: INTEGER);
 VAR r: LONGINT;
BEGIN
 IF class = Par THEN (*Var param*) loadAdr(x)
 ELSE (*value param*) load(x)
 END
END Parameter;

PROCEDURE Call(VAR x: Item);
BEGIN Put3(3, 7, x.a – pc-1); R := 0
END Call;

PROCEDURE load(VAR x: Item);
BEGIN
 IF x.mode # Reg THEN
 IF x.mode = Var THEN Put2(Ldw, R, x.r, x.a); INC(R)
 ELSIF x.mode = Par THEN Put2(Ldw, R, x.r, x.a); Put2(Ldw, R, R, 0); INC(R)

 …

 END ;
 x.mode := Reg; x.r := R-1

 79

 END
END load;

PROCEDURE loadAdr(VAR x: Item);
BEGIN
 IF x.mode = Var THEN Put1(Add, R, x.r, x.a); INC(R)
 ELSIF x.mode = Par THEN Put2(Ldw, R, x.r, x.a); INC(R)
 ELSIF x.mode = RegI THEN Put2(Add, x.r, x.r, x.a)
 ELSE OSS.Mark("address error")
 END ;
 x.mode := Reg
END loadAdr;

PROCEDURE Store*(VAR x, y: Item); (* x := y *)
 VAR r: LONGINT;
BEGIN
 IF y.mode # Reg THEN load(y) END ;
 IF x.mode = Var THEN Put2(Stw, y.r, x.r, x.a); DEC(R)
 ELSIF x.mode = Par THEN Put2(Ldw, R, x.r, x.a); Put2(Stw, y.r, R, 0); DEC(R)
 ELSIF x.mode = RegI THEN Put2(Stw, y.r, x.r, x.a); DEC(R, 2)
 ELSE OSS.Mark("illegal assignment")
 END
END Store;

Here we tacitly assume that the entry addresses of procedures are known when a call is to be
compiled. Thereby we exclude forward references which may, for example, arise in the case of
mutual, recursive referencing. If this restriction is to be lifted, the locations of forward calls must
be retained in order that the branch instructions may be fixed up when their destinations
become known. This case is similar to the fixups required for forward jumps in conditional and
repeated statements.

In conclusion, we show the code generated for the following, simple procedure:
PROCEDURE P(x: INTEGER; VAR y: INTEGER);
BEGIN x := y; y := x; P(x, y); P(y, x)
END P

 0 SUB SP, SP, 12 prolog
 1 STW LNK, SP, 0
 2 STW R0, SP, 4 v
 3 STW R1, SP, 8 adr(y)

 4 LDW R0, SP, 8
 5 LDW R0, R0, 0 y
 6 STW R0, SP, 4 x := y

 7 LDW R0, SP, 4 x
 8 LDW R1, SP, 8
 9 STW R0, R1, 0 y := x

 10 LDW R0, SP, 4 x
 11 LDW R1, SP, 8 adr(y)
 12 BL -13 P(x, y)

 13 LDW R0, SP, 8
 14 LDW R0, R0, 0 y
 15 ADD R1, SP, 4 adr(x)
 16 BL -17 P(y, x)

 17 LDW LNK, SP, 0 epilog
 18 ADD SP, SP, 12
 19 B LNK return

12.5. Standard procedures

 80

Most programming languages feature certain procedures and functions which do not need to
be declared in a program. They are said to be predeclared and they can be called from
anywhere, as they are pervasive. These are well-known functions, type conversions, or
frequently encountered statements which merit an abbreviation and are available on many
computers as single instructions. The property common to all these so-called standard
procedures is that they correspond directly either to a single instruction or to a short sequence
of instructions. Therefore, these procedures are handled quite differently by compilers; no call is
generated. Instead, the necessary instructions are emitted directly into the code. These
procedures are therefore also called in-line procedures, a term that makes sense only if the
underlying implementation technique is understood.

As a consequence it is advantageous to consider standard procedures as an object class of
their own. Thereby the need for a special treatment of calls becomes immediately apparent.
Here we consider only some predefined procedures particular tp this compiler, which are used
to generate output. Among standard functions ORD stands as a representative of all other
function.

ORD(b) INTEGER the ordinal number of (Boolean) b
eot() BOOLEAN "the end of the input text has been reached"
ReadInt(n) scan the input, assign integer to n
WriteInt(n) output the integer n
WriteChar(n) output the character, whose ordinal number is n
WriteLn end the current line

The corresponding entries in the symbol table are made when the compiler is initialized, namely
in an outermost scope called universe which always remains open. The new class attribute is
denoted by SProc, and attribute val (a in the case of Items) identifies the concerned procedure.
The following are the relevant excerpts from procedures factor and StatSequence respectively.
The parameter obj.val specifies the number of the standard procedure or function. Further
details can be extracted from the program listings.

IF sym = OSS.ident THEN
 find(obj); OSS.Get(sym);
 IF obj.class = OSG.SFunc THEN StandFunc(x, obj.val); x.type := obj.type

ELSE OSG.MakeItem(x, obj); selector(x)
END

IF sym = ident THEN
 find(obj); Get(sym);
 IF obj.class = OSG.SProc THEN StandProc(obj.val)
 ELSE MakeItem(x, obj); selector(x);
 IF sym = becomes THEN ...
 ELSIF sym = lparen THEN ...

12.6. Function procedures
A function procedure is a procedure whose identifier simultaneously denotes both an algorithm
and its result. It is activated not by a call statement but by a factor of an expression. The call of
a function procedure must therefore also take care of returning the function's result. The
question therefore arises of which resources should be used.

If our primary goal is the generation of efficient code with the minimal number of memory
accesses, then a register is the prime candidate for temporarily holding the function's result. If
this solution is adopted, we must renounce the capability of defining functions with a structured
result, because structured values cannot be held in a register.

If this restriction is considered as unacceptable, a place in the stack must be reserved to hold
the structured result. Typically, it is added to the parameter area of the activation record. The
function result is considered as an implicit result (variable) parameter. Correspondingly, the
stack pointer is adjusted before code for the first parameter is emitted.

 81

At this point, all the concepts contained in the language Oberon-0 and implemented in its
compiler have been presented.

12.7. Exercises.
12.1. Improve the Oberon-0 compiler in such a way that the restriction that variables must be

strictly local or entirely global can be lifted.

12.2. Add standard functions to the Oberon-0 compiler, generating inline code. Consider ABS,
INC, DEC.

12.3. Replace the VAR parameter concept by the notion of an OUT parameter. An OUT
parameter represents a local variable whose value is assigned to its corresponding actual
parameter upon termination of the procedure. It constitutes the inverse of the value
parameter, where the value of the actual parameter is assigned to the formal variable upon
the start of the procedure.

 82

13. Elementary Data Types

13.1. The types REAL and LONGREAL
As early as 1957 integers and real numbers were treated as distinct data types in Fortran. This
was not only because different, internal representations were necessary, but because it was
recognized that the programmer must be aware of when computations could be expected to be
exact (namely for integers), and when only approximate. The fact that with real numbers only
approximate results can be obtained, may be understood by considering that real numbers are
represented by scaled integers with a fixed, finite number of digits. Their type is called REAL,
and a real value x is represented by the pair of integers e and m as defined by the equation

x = Be-w × m 1 ≤ m < B

This form is called floating-point representation; e is said to be the exponent, m the mantissa.
The base B and the bias w are fixed values for all REAL values, characterizing the chosen
number representation. The two IEEE standards of floating-point representations feature the
following values for B and w, and to the components e and m a bit s is added for the sign:

Type B w Number of bits for e Number of bits for m Total

REAL 2 127 8 23 32
LONGREAL 2 1023 11 52 64

The exact forms of the two types, called REAL and LONGREAL in Oberon, are specified by the
following formulas:

x = (-1)s × 2e-127 × 1.m x = (-1)s × 2e-1023 × 1.m

The following examples show the floating-point representation of some selected numbers:

Decimal s e 1.m Binary Hexadecimal

1.0 0 127 1.0 0 01111111 00000000000000000000000 3F80 0000
0.5 0 126 1.0 0 01111110 00000000000000000000000 3F00 0000
2.0 0 128 1.0 0 10000000 00000000000000000000000 4000 0000
10.0 0 130 1.25 0 10000010 01000000000000000000000 4120 0000
0.1 0 123 1.6 0 01111011 10011001100110011001101 3DC CCCD
-1.5 1 127 1.5 1 01111111 10000000000000000000000 BFC0 0000

Two examples illustrate the case of LONGREAL:

1.0 0 1023 1.0 0 01111111111 00000000 ... 00000000 3FF0 0000 0000 0000
0.1 0 1019 1.6 0 01111111011 10011001 ... 10011010 3FB9 9999 9999 999A

This logarithmic form inherently excludes a value for 0. The value 0 must be treated as a
special case, and it is represented by all bits being 0. With regard to numeric properties it
constitutes a special case and a discontinuity. Furthermore, the IEEE standards postulate two
additional special values: e = 0 (with m ≠ 0) and e = 255 (resp. e = 1023) are considered as
invalid results and they are called NaN (not a number).

Normally, the programmer does not have to worry about these specifications, and the compiler
designer is not affected by them. The types REAL and LONGREAL constitute abstract data
types usually integrated in the hardware which features a set of instructions adapted to the
floating-point representation. If this set is complete, that is, it covers all basic numeric
operations, the representation may be considered as hidden, since no further, programmed
operations depend on it. In many computers, instructions for floating-point operands use a
special set of registers. The reason behind this is that often separate coprocessors, so-called
floating-point units (FPUs) are used which implement all floating-point instructions and contain
this set of floating-point registers.

 83

13.2. Compatibility between numeric data types
The values of all variables with numeric data type are numbers. Therefore there is no obvious
reason not to declare them all as assignment compatible. But, as already outlined, numbers of
different types are differently represented in terms of bit sequences within the computer. Hence,
whenever a number of type T0 is assigned to a variable of type T1, a representation conversion
has to be performed which takes little time. The question then arises of whether this fact should
remain hidden from the programmer in order to avoid distraction, or whether it should be made
explicit because it affects the efficiency of the program. The latter choice is accomplished by
declaring the various types as incompatible and by providing explicit, predefined conversion
functions.

In any case, in order to be complete, a computer's set of instructions must also contain
conversion instructions which convert integers into floating-point numbers and vice-versa. The
same holds at the level of the programming language.

In (revised) Oberon there are only the arithmetic data types: INTEGER, REAL, BYTE, and
possibly LONGREAL. There are two conversion functions:

FLT: INTEGER → REAL

FLOOR: REAL → INTEGER

FLOOR(x) yields the largest integer less or equal to x. For example

 FLOOR(1.5) = 1 FLOOR(–1.5) = –2

The type BYTE is a subrange of INTEGER with values 0 .. 255, and therefore no conversion
functions are needed. However, assigning to a variable of type BYTE may cause overflow.
Typically, arithmetic operations are performed on values of type INTEGER, that is, the compiler
treats variables of type BYTE with form Int (see Ch. 8).

13.3. The data type SET
The units of storage in computers consist of a small number of bits which are interpretable in
different ways. They may represent integers with or without sign, floating-point numbers or
logical data. The question about the way to introduce logical bit sequences in higher
programming languages has been controversial for a long time. The proposal to introduce them
as sets is due to C. A. R. Hoare (Hoare, 1972).

The proposal is attractive, because the set is a mathematically well-founded abstraction. It is
appropriately represented in a computer by its characteristic function F. If x is a set of elements
from the ordered base set M, F(x) is the sequence of truth values bi with the meaning "i is
contained in x". If we choose a word (consisting of N bits) to represent values of type SET, the
base set consists of the integers 0, 1, ... , N-1. N is typically so small that the range of
applications for the type SET is quite restricted. However, the basic set operations of
intersection, union and difference are implementable extremely efficiently. Examples of sets
represented by bit sequences with word length 4 are:

x 3 2 1 0
{0, 2} 0 1 0 1
{0, 1, 3} 1 0 1 1
{ } 0 0 0 0

Oberon's set operators are implemented by logical instructions available on every computer.
Note that we use the Oberon notation for set operations, that is, x+y for the union. x*y for the
intersection, and x-y for the difference Consequently, the IOR instruction can be used for set
union, AND for set intersection, ANN for the difference, and XOR for the symmetric difference.

 84

The result is a very efficient implementation, because the operation is executed on all elements
(bits) simultaneously (in parallel). Examples with the base set {0, 1, 2, 3} are:

{0, 1} + {0, 2} = {0, 1, 2} 0011 OR 0101 = 0111
{0, 1} * {0, 2} = {0} 0011 & 0101 = 0001
{0, 1} – {0, 2} = {1} 0011 & ~ 0101 = 0010
{0, 1} / {0, 2} = {1, 2} 0011 XOR 0101 = 0110

We conclude by showing the code representing the set expression (a+b) * (c+d)

LDW R0, base, a
LDW R1, base, b
IOR R0, R0, R1
LDW R1, base, c
LDW R2, base, d
IOR R1, R1, R2
AND R0, R0, R1

The membership test i IN sx is implemented by a bit test, typically a shift followed by a sign bit
test..

LDW R0, base, s
ROR R0, R0, i+1

The type SET is particularly useful if the base set includes the ordinal numbers of a character
set (CHAR). Efficiency is in this case somewhat reduced, because 256 bits (32 bytes) are
typically required to represent a set value. Even in 32-bit computers 8 logical instructions are
required for the execution of a set operation.

13.4. Exercises
13.1 Extend the language Oberon-0 and its compiler by the data type REAL (and/or
LONGREAL) with its arithmetic operators +, -, * and /. The RISC architecture must be extended
accordingly by a set of floating-point instructions. Choose one of the following alternatives:

a. The result type of an operation is always that of the operands. The types INTEGER and
REAL cannot be mixed. However, there exist the two transfer functions FLOOR(x) and
FLT(i).

b. Operands of the types INTEGER and REAL (and LONGREAL) may be mixed in expressions.

Compare the complexities of the compilers in the two cases.

13.2. Extend the language Oberon-0 and its compiler by the data type SET with its operators +
(union), * (intersection) and - (difference), and with the relation IN (membership). Furthermore,
set constructors are introduced by the following additional syntax. As an option, expressions in
set constructors may be confined to constants.

factor = number | set | ...
set = "{" [element {"," element}] "}".
element = expression [".." expression].

13.3. Extend the language Oberon-0 and its compiler by the data type CHAR with the functions
ORD(ch) (ordinal number of ch in the character set) and CHR(k) (k-th character in the character
set). A variable of type CHAR occupies a single byte in store.

 85

14. Open Arrays, Pointers and Procedure Types

14.1. Open arrays
An open array is an array parameter whose length is unknown (open) at the time of
compilation. Here we encounter for the first time a situation where the size of the required
storage block is not given. The solution is relatively simple in the case of a reference
parameter, because no storage has to be allocated anyway, and merely a reference to the
actual array is passed to the called procedure.

However, in order to check index bounds when accessing elements of the open array
parameter, the length must be known. Therefore, in addition to the array's address, its length is
also passed on. In the case of a multidimensional, open array the length is also necessary to
compute element addresses. Hence, the length of the array in every dimension is supplied. The
unit consisting of array address and lengths is called an array descriptor. Consider the following
example:

VAR a: ARRAY 10 OF ARRAY 20 OF INTEGER;

PROCEDURE P(VAR x: ARRAY OF ARRAY OF INTEGER);
BEGIN k := x[i]
END P;

P(a)

Under the assumption that parameters are passed in registers, as shown in Ch. 12, the
corresponding code is as follows:

MOV R0, 20 R0 := 20
MOV R1, 10 R1 := 10
ADD R2, base, a R2 := adr(a)
BL P call

If an open array parameter is passed by value, its value must be copied into its provided formal
location just as in the case of a scalar value. This operation may, however, take considerable
effort if the array is large. In the case of structured parameters, programmers should always
use the VAR option, unless a copy is essential.

Certainly the code for the copy operation is better inserted after the prologue of the procedure
rather than in the place of the call. Consequently, the code pattern for the call is the same for
value and reference parameters, with the exception that for the former the copy operation is
omitted from the prologue.

The formal location apparently does not hold the array, but instead the array descriptor, whose
size is known. The space for the copy is allocated at the top of the stack, and the stack pointer
is incremented (or decremented) by the array's size. In the case of multidimensional arrays, the
size is computed (at run-time) as the product of the individual lengths and the element size.

Here SP is changed at run time by amounts which are unknown at compile time. Therefore it is
impossible in the general case to operate with a single address register (SP); the frame pointer
FP is indeed necessary.

14.2. Dynamic data structures and pointers
The two forms of data structures provided in Oberon are the array (all elements of the same
type, homogeneous structure) and the record (heterogeneous structure). More complex
structures must be programmed individually, that is, they must be generated during program
execution. For this reason they are said to be dynamic structures. Thereby the structure's
components are generated one by one; storage is allocated for components individually. They
do not necessarily lie in contiguous locations in store. Relationships between components are
expressed explicitly by pointers.

 86

For the implementation of this concept a mechanism must be available for the allocation of
storage at run time. In Oberon, it is represented by the standard procedure NEW(x). This
allocates storage to a dynamic variable, and assigns the address of the allocated block to the
pointer variable x. From this it follows that pointers are addresses. Access to a variable
referenced by a pointer is necessarily indirect as in the case of VAR parameters. In fact, a VAR
parameter represents a hidden pointer. Consider the following declarations:

TYPE T = POINTER TO TDesc;
 TDesc = RECORD x, y : LONGINT END;
VAR a, b : T;

The code for the assignment a.x := b.y with access via pointers a and b becomes
LDW R0, SP, b R0 := b
LDW R0, R0, y R0 := b.y
LDW R1, SP, a R1 := a
STW R0, R1, x a.x := R0

The step from the referencing pointer variable to the referenced record variable is called
dereferencing. In Oberon the explicit dereferencing operator is denoted by the symbol ↑. a.x is
evidently an abbreviation for the more explicit form a↑.x. The implicit dereferencing operation is
recognizable when the selector symbol (dot) is preceded not by a record but by a pointer
variable.

Everyone who has written programs which heavily involve pointer handling knows how easily
errors can be made with catastrophic consequences. To explain why, consider the following
type declarations:

T0 = RECORD x, y : LONGINT END ;
T1 = RECORD x, y, z : LONGINT END;

Let a and b be pointer variables, and let a point to a record of type T0, b to a record of type T1.
Then the designator a.z denotes an undefined value of a non-existent variable, and a.z : = b.x
stores a value to some undefined location, perhaps corrupting another variable allocated to this
location.

This dangerous situation is elegantly eliminated by binding pointers to a data type. This permits
the validation of pointer values at the time of compilation without loss of run-time efficiency.
This brilliant idea is due to C. A. R. Hoare and was implemented for the first time in Algol W
(Hoare, 1972). The type to which a pointer is bound is called its base type.

P0 = POINTER TO T0;
P1 = POINTER TO T1;

Now the compiler can check and guarantee that only pointer values can be assigned to a
pointer variable p which points to a variable of the base type of p. The value NIL, pointing to no
variable at all, is considered as belonging to all pointer types. Referring to the example above,
now the designator a.z is detected as incorrect, because z is not a field of the type T0 to which
a is bound. If every pointer variable is initialized to NIL, it suffices to precede every access via a
pointer with a test for the pointer value NIL. In this case, the pointer points to no variable, and
any designator must be erroneous.

Such a test is indeed quite simple, but because of its frequency it reduces efficiency. The need
for an explicit code pattern can be circumvented by (ab)using the storage protection
mechanism available on many computers. In this case, the test does not properly check
whether a = NIL, but rather whether a.z is a valid, unprotected address. If as usual NIL is
represented by the address 0, and if locations 0 ... N-1 are protected, mistaken references via
NIL are caught only if their field offsets are less than N. Nevertheless, the method seems to be
satisfactory in practice.

The introduction of pointers requires a new class of objects in the symbol table and also a new
mode of items. Both are to imply indirect addressing. Because VAR parameters also require
indirect addressing, a mode indicating indirection is already present, and it is only natural to use

 87

the same mode for access via pointers. However, the name Ind would now appear as more
appropriate than Par.

Designator Mode
x Var Direct addressing
x↑ Ind Indirect addressing
x↑.y Ind Indirect addressing with offset

Hence, the (usually implied) dereferencing operator converts the mode of an item from Var to
Ind. To summarize:

1. The notion of a pointer is easily integrated into our system of type compatibility checking.
Every pointer type is bound to a base type, namely the type of the referenced variable.

2. x↑ denotes dereferencing, implemented by indirect addressing.

3. Pointers are type safe if access is preceded by a NIL test, and if pointer variables are
initialized to NIL.

Allocation of variables referenced via pointers is obtained by a call of procedure NEW(p). We
postulate its existence as run-time support in operating systems. The size of the block to be
allocated is given by the base type of p.

So far, we have ignored the problem of storage reclamation. It is actually irrelevant for abstract
programs; for concrete ones, however, it is crucial, as stores are inherently finite. Modern
operating systems offer a centralized storage management with garbage collection. There are
various schemes for storage reclamation; but we shall not explain them here. We restrict
ourselves to the only question relevant to the compiler designer: which data must be provided
to the garbage collector, so that at any time all irrelevant storage blocks can safely be identified
and reclaimed? A variable is no longer relevant when there are no references to it, references
emanating from declared pointer variables. In order to determine whether such references
exist, the garbage collector requires the following data:

1. the addresses of all declared pointer variables,
2. the offsets of all pointer fields in dynamically allocated records, and
3. the size of every dynamically allocated variable.

This information is available at compile time, and it has to be "handed down" in such a way that
it is available to the garbage collector at run time. In this sense compiler and system must be
integrated. The system is here assumed to include storage management, in particular the
allocator NEW and the garbage collector.

In order to make this information available at run time, procedure NEW not only allocates a
block of storage, but provides it with a type description of the allocated variable. Naturally, such
a descriptor must be issued only once, as it need not be duplicated for every instance (variable)
of the same type. Therefore, the block is assigned merely a pointer to the type descriptor, and
this pointer remains invisible to the programmer. The pointer is called a type tag (s. Figure
14.1).

The type descriptor apparently is a reduced form of the object describing the type in the
compiler's symbol table, reduced to the data relevant for storage reclamation. This concept has
the following consequences:

1. The compiler must generate a descriptor for every (record) type, and it must add it to the
object file.

2. Procedure NEW(p) obtains, in addition to the address of p, an additional, hidden parameter
specifying the address of the descriptor of the base type of p.

3. The program loader must interpret the added object file information and generate type
descriptors.

 88

Figure 14.1. Pointer variable, referenced variable, and type descriptor.

The type descriptor specifies the size of the variable and the offset of all pointer fields (Figure
14.2).

Figure 14.2. Variable with type descriptor.

This, however, is still insufficient. In order that data structures can be traversed, their roots have
to be known. Therefore, the object file is also provided with a list of all declared pointer
variables. This list is copied upon loading into memory. The list must also include the hidden
pointers designating type descriptors. In order that descriptors do not have to be generated for
all data types, Oberon restricts pointers to refer to records. This is justified when considering
the role of records in dynamic data structures.

14.3. Procedure types
If in a language procedures can be passed as parameters, or if they can occur as values of
variables, it becomes necessary to introduce procedure types. Which are the characteristics of
such types, that is, of the values which variables may assume?

Procedure types have been in use since the advent of Algol 60. There, they occurred implicitly
only. A parameter in Algol 60 can be a procedure (formal procedure). Its type, however, is not
specified; it is merely known that the parameter denotes some procedure or function. The type
specification is incomplete or missing, and this constitutes an unfortunate loophole in Algol's
type system. In Pascal, it was retained as a concession to Algol compatibility. Modula-2,
however, requires a complete, type-safe specification, and besides parameters, variables with
procedures as their values are also allowed. Thereby procedure types achieve the same
standing as other data types. In this respect, Oberon has adopted the same concept as
Modula-2 (Wirth, 1982).

What does this type-safe specification, called the procedure's signature, consist of? It contains
all specifications necessary to validate the compatibility between actual and formal parameters,
namely their number, the type of each parameter, its kind (value or reference) and the type of
the result in the case of function procedures. The following example illustrates the case:

PROCEDURE F(x, y : REAL): REAL;
BEGIN

p
p↑

type
descriptor

tag

0
4
8
12
16
20
24

size = 32

offset = 8
 20
 24

type
descriptor

tag

 89

...
END F

PROCEDURE H(f: PROCEDURE (u, v : REAL): REAL);
 VAR a, b: REAL;
BEGIN a : = f(a + b, a - b)
END H

Upon compilation of the declaration of H the type compatibility between a + b and u,
respectively that between a - b and v, is checked, as well as whether the result type of f is
assignable to a. In the call H(F) the compatibility between the parameters, and that of the result
type of the actual F and the formal f is verified, that is, between x and u and between y and v.
Note that the identifiers u and v do not occur in the program, except as the names of the formal
parameters of the formal procedure f. Hence, they are actually superfluous, but they may be
useful as comments to the reader if meaningful names are chosen.

Pascal, Modula and Oberon assume name compatibility as the basis for establishing type
consistency. In the case of procedure parameters, an exception was made; structural
compatibility suffices. If name compatibility were required, the type (signature) of every
procedure used as an actual parameter would have to be given an explicit name. This was
considered as too cumbersome when the language was designed. However, structural
compatibility requires that a compiler be capable of comparing two parameter lists for type
correspondence.

A procedure may thus be assigned to a variable under the condition that the two parameter lists
correspond. The assigned procedure is activated by referring to the procedure variable. The
call is indirect. This is actually the basis of object-oriented programming, where procedures are
bound to fields of record variables called objects. These bound procedures are called methods.
In contrast to Oberon, methods, once declared and bound, cannot be altered. All instances of a
class refer to the same methods.

The implementation of procedure types and methods turns out to be surprisingly simple, if the
problem of type compatibility checking is ignored. The value of a variable or record field with
procedure type is simply the entry address of the assigned procedure. This holds only if we
require that only global procedures, that is, procedures which are not embedded in some
context, can be assigned. This readily acceptable restriction is explained with the aid of the
following example which breaches this restriction. Upon execution of Q alias v the context
containing variables a and b is missing.

TYPE T = PROCEDURE (u: INTEGER);
VAR v: T; r: INTEGER;

PROCEDURE P;
 VAR a, b: INTEGER;
 PROCEDURE Q(VAR x: INTEGER);
 BEGIN x := a+b END Q;
BEGIN v := Q
END P;

... P; v(r) ...

14.4. Exercises.
14.1. Extend the language Oberon-0 and its compiler with open arrays:

a. for one-dimensional VAR parameters,
b. for multi-dimensional VAR parameters.

14.2. Extend the language Oberon-0 and its compiler with function procedures:

a. for scalar result types (INTEGER, REAL, SET),
b. for any type.

 90

14.3. A certain module M manages a data structure whose details are to be kept hidden. In
spite of this hiding it must be possible to apply any given operation P on all elements of the
structure. For this purpose, a procedure Enumerate is exported from M, which allows P to be
specified as parameter. As a simple example, we choose for P the counting of the elements
currently in the data structure and display the desired solution:

PROCEDURE Enumerate(P: PROCEDURE (e: Element));

PROCEDURE CountElements*;
 VAR n: INTEGER;
 PROCEDURE Cnt(e: Element); BEGIN n := n+1 END Cnt;
BEGIN n := 0; M.Enumerate(Cnt); Texts.WriteInt(W, n, 6)
END CountElements;

Unfortunately, this solution violates a restriction postulated for the language Oberon. The
restriction specifies that procedures used as parameters must be declared globally. This forces
us to declare Cnt outside of CountElements and thereby also the counter variable n, although
both definitely have no global function.

Implement procedure types in such a way that the mentioned restriction can be lifted, and that
the proposed solution is admissible. What is the price?

 91

15. Modules and Separate Compilation

15.1. The principle of information hiding
Algol 60 introduced the principles of textual locality of identifiers and that of limited lifetime of
the identified objects during execution. The range of visibility of an identifier in the text is called
scope (Naur, 1960), and it extends over the block in which the identifier is declared. According
to the syntax, blocks may be nested, with the consequence that the rules about visibility and
scopes must be refined. Algol 60 postulates that identifiers declared in a block B are visible
within B and within all blocks contained in B. But they are invisible in the environment of B.

From this rule, the implementer concludes that storage must be allocated to a variable x local to
B as soon as control enters B, and that storage may be released as soon as control leaves B.
Not only is x invisible outside B, but x ceases to exist when control is outside B. This implies the
significant advantage that storage need not remain allocated to all variables of a program.

In some cases, however, the continued existence of a variable during a period of invisibility is
highly desirable. Variable x then seems to reappear with its previous value as soon as control
enters block B again. This special case was covered in Algol 60 by the feature of own
variables. But this solution was soon discovered to be quite unsatisfactory, in particular in
connection with recursive procedures.

An elegant and highly useful solution to the own-problem was discovered around 1972 with the
structure of the module. It was adopted in the languages Modula (Wirth, 1977) and Mesa
(Mitchell, Maybury and Sweet, 1978), and later under the name package in Ada. Syntactically,
a module resembles a procedure and consists of local declarations followed by statements. In
contrast to a procedure, however, a module is not called, but its statements are executed once
only, namely when the module is loaded. The locally declared objects are static and remain in
existence as long as the module remains loaded. The statements in the module body merely
serve to initialize the module's variables. These variables are invisible outside the module;
effectively they are hidden. D. L. Parnas has coined the term information hiding, and it has
become an important notion in software construction. Oberon features the possibility of
specifying selected identifiers declared in modules as visible in the module's environment.
These identifiers are then said to be exported.

The own variable x declared within the Algol procedure P now will be declared, like P itself,
local to a module M. P is exported, but not x. In the environment of M the details of the
implementation of P as well as the variable x are hidden, but x retains its existence and its
value between calls of P.

The desire to hide certain objects and details is particularly justified if a system consist of
various parts whose tasks are relatively well separated, and if the parts themselves are of a
certain complexity. This is typically the case in an organizational unit which manages a data
structure. Then the data structure is hidden within a module, and it is accessible only via
exported procedures. The programmer of this module postulates certain invariants, such as
consistency conditions, which govern the data structure. These invariants can be guaranteed to
hold, because they cannot be violated by parts of the system outside the module. As a
consequence, the programmer's responsibility is effectively limited to the procedures within the
module. This encapsulation of details solely responsible for the specified invariants is the true
purpose of information hiding and of the module concept.

Typical examples of modules and information hiding are the file system hiding the structure of
files and their dictionary, the scanner of a compiler hiding the source text and its lexicographic
structure, or the code generator of a compiler hiding the generated code and the structure of
the target architecture.

15.2. Separate compilation

 92

It is tempting to postulate that modules be nestable like procedures. This facility is offered for
example by the language Modula-2. In practice, however, this flexibility has hardly been fruitful.
A flat module structure usually suffices. Hence, we consider all modules as being global, and
their environment as the universe.

Much more relevant than their nestability is the possibility of developing and compiling modules
separately. The latter is clearly feasible only if the modules are global, that is, not nested. The
reason for this demand is simply the fact that software is never planned, implemented and
tested in straight sequence, but that it is developed in steps, each step incorporating some
additions or adaptations. Software is not "written", but grows. The module concept is of
fundamental importance in this connection, because it allows development of individual
modules separately under the assumption of constant interfaces of their imports. The set of
exported objects effectively constitutes a module's interface with its partners. If an interface
remains unchanged, a module's implementation can be improved (and corrected) without
needing to adapt and recompile the module's clients. This is the real justification for separate
compilation.

The advantage of this concept becomes particularly relevant if software is developed by teams.
Once agreement is reached about the partitioning of a system into modules and about their
interfaces, the team members can proceed independently in implementing the module
assigned to them. Even if in practice it turns out that later changes in the specification of
interfaces are avoidable only rarely, the simplification of teamwork through the concept of
separate compilation of modules can hardly be overestimated. The successful development of
complex systems crucially depends on the concept of modules and their separate compilation.

At this point, the reader may think that all this is not new, that the independent programming of
modules and their binding by the program loader, as symbolized in Figure 15.1, has been in
common use since the era of assemblers and the first Fortran compilers.

Figure 15.1. Independent compilation of modules A and B.

However, this ignores the fact that higher programming languages offer significantly increased
protection against mistakes and inconsistencies through their static type concept. This
inestimable - but all too often underestimated gain - is swept aside if type consistency checks
are guaranteed only within modules, but not across module boundaries. This implies that type
information about all imported objects must be available whenever a module is compiled. In
contrast to independent compilation (Figure 15.1), where this information is not available,
compilation as shown in Figure 15.2 with type consistency checks across module boundaries is
called separate compilation.

Information about the imported objects is essentially an excerpt of the symbol table as
presented in Chapter 8. This excerpt of the symbol table, transformed into a sequential form, is
called a symbol file. Compilation of a module A which imports (objects from) modules B1 ... Bn
now requires, in addition to the source text of A, the symbol files of B1 ... Bn. And in addition to
the object code (A.obj) it also generates a symbol file (A.sym).

A.Mod Compiler A.obj

B.Mod Compiler B.obj

Linker
code

 93

Figure 15.2. Separate compilation of modules A and B.

15.3. Implementation of symbol files
From the foregoing considerations we may first conclude that compilation of a module's import
list causes a symbol file to be read for each module identifier in the list. The symbol table of the
compiled module is initialized by the imported symbol files. Second, it follows that at the end of
compilation the new symbol table is traversed, and a symbol file is output with an entry
corresponding to every symbol table element marked for export. Figure 15.3 shows as an
example the relevant excerpt of the symbol table during compilation of a module A importing B.
Within B, T and f are marked with an asterisk for export.

Figure 15.3. Symbol table of A with imports from B.

Let us first consider the generation of the symbol file M.sym of a module M. At first sight, the
task merely consists of traversing the table and emitting an entry corresponding to every
marked element in an appropriately sequentialized form. The symbol table is essentially a list of
objects with pointers to type structures which are trees. In this case the sequentialization of
structures using a characteristic prefix for every element is perhaps the most appropriate
technique. It is illustrated by an example in Figure 15.4.

VAR x: ARRAY 10 OF INTEGER;
 y: ARRAY 8 OF ARRAY 20 OF REAL

A.Mod
Compiler

A.obj

B.Mod
Compiler

B.obj

Linker
code

A.sym

B.sym

A

x

B T Record

f

Type

imports

MODULE A;
 IMPORT B;
 VAR x: B.T;
BEGIN x.f := 1;
…
END A

MODULE B;
 TYPE T* =
 RECORD f*: INTEGER … END;
BEGIN …
END B

 94

Figure 15.4. Sequentialized form of a symbol table with two arrays.

A problem arises because every object contains at least a pointer referring to its type. Writing
pointer values into a file is problematic, to say the least. Our solution consists in writing the type
description into the file the first time it is encountered when scanning the symbol table. Thereby
the type entry is marked and obtains a unique reference number. The number is stored in an
additional record field of the type ObjectDesc. If the type is referenced again later, the
reference number is output instead of the structure.

This technique not only avoids the repeated writing of the same type descriptions, but also
solves the problem of recursive references, as shown in Figure 15.5.

TYPE P = POINTER TO R;
 R = RECORD x, y: INTEGER; next: P END

Figure 15.5. Cyclic reference of type node.

Positive values are used for reference numbers. As an indication that the reference number is
used for the first time, and that it is therefore immediately followed by the type description, the
number is given a negative sign. While reading a symbol file, a type table T is constructed with
references to the respective type structures. If a positive reference number r is read, T[r] is the
needed pointer; if r is negative, the subsequent type data is read, and the pointer referring to
the newly constructed descriptor is assigned to T[-r].

class
name
type
adr
next

Var
“x”

-40

Array

10

form

base
len

Integ

Var x Array 10 Integ -40

Symbol file

Var
“y”

-1000

Array

8

Array

20 Real

Var y Array 8 Array 20 Real -1000

Type
“P”

class
name
type
adr
next

form

base
len

Pntr

4

Rec

8

Fld
“x”

0

Fld
“y”

4

Fld
next

8
NIL

Type
“R”

Int

NIL
4

 95

Figure 15.6. Re_export of type A.T from module B.

Type information can, in contrast to data about other objects, be imported and at the same time
be re-exported. Therefore it is necessary to specify the module from which the exported type
stems. In order to make this possible, we use a so-called module anchor. In the heading of
every symbol file there is a list of anchor objects, one for each imported module which is
re_exported, that is,. which contains a type that is referenced by an exported object. Figure
15.6 illustrates such a situation; module C imports modules A and B, whereby a variable x is
imported from B whose type stems from A. The type compatibility check for an assignment like
y := x rests on the assumption that the type pointers of x and y both refer to the same type
descriptor. If they do not, an error is indicated.

Hence we conclude that upon compilation of a module M, not only the symbol tables of the
explicitly imported modules must be present, but also those of modules from which types are
referenced either directly or indirectly. This is a cause for concern, because the compilation of
any module might necessitate the reading of symbol files of entire module hierarchies. It might
even reach down to the deepest level of an operating environment, from where neither
variables nor procedures are imported, but perhaps only a single type. The result would not
only be the superfluous loading of large amounts of data, but also a waste of much memory
space. It turns out, that although our concern is justified, the consequences are much less
dramatic than might be expected (Franz, 1993). The reason is that most symbol tables
requested are present already for other reasons. As a consequence, the additional effort
remains small. Nevertheless it is worth pondering over the possibility of avoiding the extra
effort. Indeed, the first compilers for Modula and Oberon have adopted the following technique.

Let a module M import types from modules M0, M1, and so on, either directly or indirectly. The
solution consists of including in the symbol file of M complete descriptions of the imported
types, thereby avoiding references to the secondary modules M0, M1, and so on. However, this
fairly obvious solution causes complication. In the example illustrated by Figure 15.6, the
symbol file of B evidently contains a complete description of type T. The consistency check for
the assignment y := B.x, in order to be highly efficient, merely compares two type pointers. The
configuration shown on the right of Figure 15.6 must therefore be present after loading. This
implies that in symbol files re-exported types not only specify their home module, but that when
loading a symbol file a test must verify whether or not the read type is already present. This
may be the case because the symbol file of the module defining the type has already been
loaded, or because the type has already been read when loading other symbol files.

At this point we also mention another, small complication in connection with types that arises
because types may appear under different names (aliases). Although use of aliases is rare, the

VAR y: A.T

y := B.x

TYPE T =
 RECORD ...

VAR x*: A.T

C

 B

A

“C”

“B”

“A”

Var
“y”

Var
“x”

Type
T Rec

main

anchors

 96

language definition (unfortunately) allows it. They are moderately meaningful only if the
synonyms stem from different modules, as shown in Figure 15.7.

Figure 15.7. Type with aliases.

When loading the symbol file of B it is recognized that B.T1 and A.T0, both pointing to a type
object, must actually point to the same object descriptor. In order to determine which of the two
descriptors should be discarded and which one retained, type nodes (type Structure) are
supplied with a back-pointer to the original type object (type Object), here to T0.

15.4. Addressing external objects
The principal advantage of separate compilation is that changes in a module M do not
invalidate clients of M, if the interface of M remains unaffected. We recall that the interface
consists of the entire set of exported declarations. Changes which do not affect the interface
may occur, so to say, under cover, and without client programmers being aware of them. Such
changes must not even require recompilation of the clients using new symbol files. For the sake
of honesty, we hasten to add that exported procedures must in their semantics not have
altered, because compilers could not detect such changes reliably. Hence, if we say that an
interface remains unchanged, we explicitly refer to the declarations of types and variables, and
to the signatures of procedures, and only implicitly to their semantics.

If in a certain module non-exported procedures and variables are changed, added or deleted,
their addresses necessarily also change, and as a consequence so do those of other, possibly
exported variables and procedures. This leads to a change of the symbol table, and thereby
also to an invalidation of client modules. But this obviously contradicts the requirements
postulated for separate compilation.

The solution to this dilemma lies in avoiding the inclusion of addresses in a symbol file. This
has the consequence that addresses must be computed when loading and binding a module.
Hence, in addition to its address (for module-internal use), an exported object is given a unique
number. This number assumes the place of the address in the symbol file. Typically, these
numbers are allocated strictly sequentially.

As a consequence, when compiling a client, only module specific numbers are available, but no
addresses. These numbers must, as mentioned before, be converted into absolute addresses
upon loading. For this task, knowledge about the positions of such incomplete address fields
must be available. Instead of supplying the object file with a list of all locations of such
addresses, the elements of this fixup list are embedded in the instructions at the very places of
the yet unknown addresses. This mirrors the technique used for the completion of addresses of
forward jumps (see Chapter 11). If all such addresses to be completed are collected in a single
fixup list, then this corresponds to the Figure 15.8 (a). Every element must be identified with a

B

A

Typ
“T1”

Typ
“T0”

 type

obj

TYPE T1 = A.T0

 97

pair consisting of a module number (mno) and an entry number (eno). It is simpler to provide a
separate list for every module. In the object file, not just a single fixup root, but one for each list
is required. This corresponds to the Figure 15.8 (b). Part (c) shows the extreme solution where
a separate fixup list is specified for every imported object. Which of the three presented
solutions is adopted, depends on how much information can be put into the place of an
absolute address, by which it is ultimately replaced.

Figure 15.8. Three forms of fixup lists in object files.

15.5. Checking configuration consistency
It may seem belated if we now pose the question: Why are symbol files introduced at all? Let us
assume that a module M is to be compiled which imports M0 and M1. A rather straightforward
solution would be to recompile M0 and M1 immediately preceding the compilation of M, and to
unite the three symbol tables obtained. The compilations of M0 and M1 might easily be
triggered by the compilation of M reading the import list.

Although the repeated compilation of the same source text is a waste of time, this technique is
used by various commercial compilers for (extended) Pascal and Modula. The serious
shortcoming inherent in this method, however, is not so much the additional effort needed, but
the lack of a guarantee for the consistency of the modules being bound. Let us assume that M
is to be recompiled after some changes had been made in the source text. Then it is quite likely
that after the original formulation of M and after its compilation, changes have also been made
to M0 and M1. These changes may invalidate M. Perhaps even the source versions of M0 and
M1 currently available to the programmer of client M no longer comply with the actual object
files of M0 and M1. This fact, however, cannot be determined by a compilation of M, but it
almost certainly leads to disaster when the inconsistent parts are bound and executed.

Symbol files, however, do not permit changes like source files; they are encoded and not visible
through a text editor. They can only be replaced as a whole. In order to establish consistency,
every symbol file is provided with a unique key. Symbol files thus make it possible to make
modules available without giving away the source text. A client may rely on the specified
interface definition and, thanks to the key, the consistency of the definition with the present
implementations is also guaranteed. Unless this guarantee is provided, the entire notion of
modules and separate compilation is perhaps enticing, but hardly a useful tool.

B.Q

B.x

B.Q

A.P

A.y

B.Q

B.x

B.Q

A.P

A.y

B.Q

B.x

B.Q

A.P

A.y

A B A.y A.P B.Q B.x

mno eno

list of all imports

eno

list per module list per object

 98

Figure 15.9. Inconsistency of module versions.

As an example, Figure 15.9 shows on its left side the situation upon compilation of module B,
and on the right side that upon compilation of module C. Between the two compilations, A was
changed and recompiled. The symbol files of B and C therefore contain module anchors of A
with differing keys, namely 8325 in B and 8912 in C. The compiler checks the keys, notices the
difference, and issues an error message. If, however, module A is changed after the
recompilation of C (with changed interface), then the inconsistency can and must be detected
upon loading and binding the module configuration. For this purpose, the same keys are also
included in the respective object files. Therefore it is possible to detect the inconsistency of the
import of A in B and C before execution is attempted. This is absolutely essential.

The key and the name are taken as the characteristic pair of every module, and this pair is
contained in the heading of every symbol and object file. As already mentioned, the names of
modules in the import list are also supplemented by their key.

Unique module keys can be generated by various algorithms. The simplest is perhaps the use
of current time and date which, suitably encoded, yield the desired key. A drawback is that this
method is not entirely reliable. Even if the resolution of the clock is one second, simultaneous
compilations on different computers may generate the same key. Somewhat more significant is
the argument that two compilations of the same source text should always generate the same
key; but they do not. Hence, if a change is made in a module which is later detected to be in
error, recompilation of the original version nevertheless results in a new key which lets old
clients appear as invalidated.

A better method to generate a key is to use the symbol file itself as argument, like in the
computation of a checksum. But this method is also not entirely safe, because different symbol
files may result in the same key. But it features the advantage that every recompilation of the
same text generates the same key. Keys computed in this way are called fingerprints.

15.6. Exercises
15.1. Incorporate separate compilation into your Oberon-0 compiler. The langauge is extended
to include an import list and a marker in the exported identifier's declaration. Use the technique
of symbol files and introduce the rule that exported variables may not be assigned values from
outside, that is, in importing modules that are considered to be read-only variables.

15.2. Implement a fingerprint facility for generating module keys.

PROC P;
BEGIN A.Q(a,b)
END P

PROC Q(x, y: REAL);
BEGIN …
END Q

PROCF Q(x,y,z: REAL);
BEGIN …
END Q

B.P;

9691 9144

8325 8912

A

B

A

C

 99

16. Optimizations and the Frontend/Backend Structure

16.1. General considerations
If we analyse the code generated by the compiler developed in the preceding chapters, we can
easily see that it is correct and fairly straightforward, but in many instances also improvable.
The reason primarily lies in the directness of the chosen algorithm which translates language
constructs independently of their context into fixed patterns of instruction sequences. It hardly
perceives special cases and does not take advantage of them. The directness of this scheme
leads to results that are only partially satisfactory as far as economy of storage and execution
speed are concerned. This is not surprising, as source and target languages do not correspond
in simple ways. In this connection we can observe the semantic gap between programming
language on the one hand and instruction set and machine architecture on the other.

In order to generate code which utilizes the available instructions and machine resources more
effectively, more sophisticated translation schemes must be employed. They are called
optimizations, and compilers using them are said to be optimizing compilers. It must be pointed
out that this term, although in widespread use, basically is a euphemism. Nobody would be
willing to claim that the code generated by them could be optimal in all cases, that is, in no way
improvable. The so_called optimizations are nothing more than improvements. However, we
shall comply with the common vocabulary and will also use the term optimization.

It is fairly evident that the more sophisticated the algorithm, the better the code obtained. In
general it can be claimed that the better the generated code and the faster its execution, the
more complex, larger and slower will be the compiler. In some cases, compilers have been built
which allow a choice of an optimization level: while a program is under development, a low, and
after its completion a high, degree of optimization is selected for compilation. As an aside, note
that optimization may be selected with different goals, such as towards faster execution or
towards denser code. The two criteria usually require different code generation algorithms and
are often contradictory, a clear indication that there is no such thing as a well-defined optimum.

It is hardly surprising that certain measures for code improvement may yield considerable gains
with modest effort, whereas others may require large increases in compiler complexity and size
while yielding only moderate code improvements, simply because they apply in rare cases only.
Indeed, there are tremendous differences in the ratio of effort to gain. Before the compiler
designer decides to incorporate sophisticated optimization facilities, or before deciding to
purchase a highly optimizing, slow and expensive compiler, it is worth while clarifying this ratio,
and whether the promised improvements are truly needed.

Furthermore, we must distinguish between optimizations whose effects could also be obtained
by a more appropriate formulation of the source program, and those where this is impossible.
The first kind of optimization mainly serves the untalented or sloppy programmer, but merely
burdens all the other users through the increased size and decreased speed of the compiler.
As an extreme example, consider the case of a compiler which eliminates a multiplication if one
factor has the value 1. The situation is completely different for the computation of the address
of an array element, where the index must be multiplied by the size of the elements. Here, the
case of a size equal to 1 is frequent, and the multiplication cannot be eliminated by a clever
trick in the source program.

A further criterion in the classification of optimization facilities is whether or not they depend on
a given target architecture. There are measures which can be explained solely in terms of the
source language, independent of any target. Examples of target_independent optimizations are
suggested by the following well known identities:
x + 0 = x
x * 2 = x + x
b & TRUE = b
b & ~b = FALSE

 100

IF TRUE THEN A ELSE B END = A
IF FALSE THEN A ELSE B END = B

On the other hand, there are optimizations that are justified only through the properties of a
given architecture. For example, computers exist which combine a multiplication and an
addition, or an addition, a comparison and a conditional branch in a single instruction. A
compiler must then recognize the code pattern which allows the use of such a special
instruction.

Lastly, we must also point out that the more optimizations with sizeable effects that can be
incorporated in a compiler, the poorer its original version must have been. In this connection,
the cumbersome structures of many commercial compilers, whose origin is difficult to fathom,
lead to surprisingly poor initial performance, which makes optimizing features seem absolutely
indispensible.

16.2. Simple optimizations
First, let us consider optimizations that are implementable with little effort, and which therefore
are practically mandatory. This category includes the cases which can be recognized by
inspection of the immediate context. A prime example is the evaluation of expressions with
constants. This is called constant folding and is already contained in the compiler presented.

Another example is multiplication by a power of 2, which can be replaced by a simple, efficient
shift instruction. Shift operations are usually much faster than multiplication. Also this case can
be recognized without considering any context:
IF (y.mode = Const) & (y.a # 0) THEN
 n := y.a; k := 0;
 WHILE ~ODD(n) DO n := n DIV 2; k := k+1 END ;
 IF n = 1 THEN Put1(LSL, R0, R0, k) ELSE Put1(MUL, R0, R0, y.a) END
ELSE ...
END

Division (of integers) is treated in the same way. If the divisor is 2k for some integer k, the
dividend is merely shifted k bits to the right. For the modulo operator, the least significant k bits
are simply masked out.

16.3. Avoiding repeated evaluation
Perhaps the best known case among the target independent optimizations is the elimination of
common subexpressions. At first sight, this case may be classified among the elective
optimizations, because the re-evaluation of the same subexpression can be achieved by a
simple change of the source program. For example, the assignments

x := (a+b)/c; y := (a+b)/d

can easily be replaced by three simpler assignments when using an auxiliary variable u:

u := a+b; x := u/c; b := u/d

Certainly, this is an optimization with respect to the number of arithmetic operations, but not
with respect to the number of assignments or the clarity of the source text. Therefore the
question remains open as to whether this change constitutes an improvement at all.

More critical is the case where the improvement is impossible to achieve by a change of the
source text, as is shown in the following example:

a[i, j] := a[i, j] + b[i, j]

Here, the same address computation is performed three times, and each time it involves at
least one multiplication and one addition. The common subexpressions are implicit and not
directly visible in the source. An optimization can be performed only by the compiler.

 101

Elimination of common expressions is only worth while if they are evaluated repeatedly. This
may even be the case if the expression occurs only once in the source:

WHILE i > 0 DO z := x+y; i := i-1 END

Since x and y remain unchanged during the repetition, the sum need be computed only once.
The compiler must pull the assignment to z out of the loop. The technical term for this feat is
loop invariant code motion.

In all the latter cases code can only be improved by selective analysis of context. But this is
precisely what increases the effort during compilation very significantly. The compiler presented
for Oberon-0 does not constitute a suitable basis for this kind of optimization.

Related to the pulling out of constant expressions from loops is the technique of simplifying
expressions by using the values computed in the previous repetition, that is, by considering
recurrence relations. If, for example, the address of an array element is given by adr(a[i]) = k*i +
a0, then adr(a[i+1]) = adr(a[i]) + k. This case is particularly frequent and therefore relevant. For
instance, the addresses of the indexed variables in the statement

FOR i := 0 TO N-1 DO a[i] := b[i] * c[i] END

can be computed by a simple addition of a constant to their previous values. This optimization
leads to significant reductions in computation time. A test with the following example of a matrix
multiplication showed surprising results:
FOR i := 0 TO 99 DO
 FOR j := 0 TO 99 DO
 FOR k := 0 TO 99 DO a[i, j] := a[i, j] + b[i, k] * c[k, j] END
 END
END

The use of registers instead of memory locations to hold index values and sums, and the
elimination of index bound tests resulted in a speed increased by a factor of 1.5. The
replacement of indexed addressing by linear progression of addresses as described above
yielded a factor of 2.75. And the additional use of a combined multiplication and addition
instruction to compute the scalar products increased the factor to 3.90.

Unfortunately, not even consideration of simple context information suffices in this case. A
sophisticated control and data flow analysis is required, as well as detection of the fact that in
each repetition an index is incremented monotonically by 1.

16.4. Register allocation
The dominant theme in the subject of optimization is the use and allocation of processor
registers. In the Oberon-0 compiler presented registers are used exclusively to hold anonymous
intermediate results during the evaluation of expressions. For this purpose, usually a few
registers suffice. Modern processors, however, feature a significant number of registers with
access times considerably shorter than that of main memory. Using them for intermediate
results only would imply a poor utilization of the most valuable resources. A primary goal of
good code optimization is the most effective use of registers in order to reduce the number of
accesses to the relatively slow main memory. A good strategy of register usage yields more
advantages than any other branch of optimization.

A widespread technique is register allocation using graph colouring. For every value occurring
in a computation, that is, for every expression the point of its generation and the point of its last
use are determined. They delimit its range of relevance. Obviously, values of different
expressions can be stored in the same register, if and only if their ranges do not overlap. The
ranges are represented by the nodes of a graph, in which an edge between two nodes signifies
that the two ranges overlap. The allocation of N available registers to the occurring values may
then be understood as the colouring of the graph with N colours in such a way that

 102

neighbouring nodes always have different colours. This implies that values with overlapping
ranges are always allocated to different registers.

Furthermore, selected, scalar, local variables are no longer allocated in memory at all, but
rather in dedicated registers. In order to approach an optimal register utilization, sophisticated
algorithms are employed to determine which variables are accessed most frequently. Evidently,
the necessary bookkeeping about variable accesses grows, and thereby compilation speed
suffers. Also, care has to be taken that register values are saved in memory before procedure
calls and are restored after the procedure return. The lurking danger is that the effort necessary
for this task surpasses the savings obtained. In many compilers, local variables are allocated to
registers only in procedures which do not contain any calls themselves (leaf procedures), and
which therefore are also called most frequently, as they constitute the leaves in the tree
representing the procedure call hierarchy.

A detailed treatment of all these optimization problems is beyond the scope of an introductory
text about compiler construction. The above outline shall therefore suffice. In any case such
techniques make it clear that for a nearly optimal code generation significantly more information
about context must be considered than is the case in our relatively simple Oberon-0 compiler.
Its structure is not well-suited to achieving a high degree of optimization. But it serves
excellently as a fast compiler producing quite acceptable, although not optimal code, as is
appropriate in the development phase of a system, particularly for educational purposes.
Section 16.5 indicates another, somewhat more complex compiler structure which is better
suited for the incorporation of optimization algorithms.

16.5. The frontend/backend compiler structure
The most significant characteristic of the compiler developed in Chapters 7 _ 12 is that the
source text is read exactly once. Code is thereby generated on the fly. At each point,
information about the operands is restricted to the items denoting the operand and to the
symbol table representing declarations. The so-called frontend/backend compiler structure,
which was briefly mentioned in Chapter 1, deviates decisively in this respect. The frontend part
also reads the source text once only, but instead of generating code it builds a data structure
representing the program in a form suitably organized for further processing. All information
contained in statements is mapped into this data structure. It is called a syntax tree, because it
also mirrors the syntactic structure of the text. Somewhat oversimplifying the situation, we may
say that the frontend compiles declarations into the symbol table and statements into the
syntax tree. These two data structures constitute the interface to the backend part whose task
is code generation. The syntax tree allows fast access to practically all parts of a program, and
it represents the program in a preprocessed form. The resulting compilation process is shown
in Figure 16.1.

 103

Figure 16.1. Compiler consisting of front end and back end

We pointed out one significant advantage of this structure in Chapter 1: the partitioning of a
compiler in a target-independent front end and a target-dependent back end. In the following,
we focus on the interface between the two parts, namely the structure of the syntax tree.
Furthermore, we show how the tree is generated.

Exactly as in a source program where statements refer to declarations, so does the syntax tree
refer to entries in the symbol table. This gives rise to the understandable desire to declare the
elements of the symbol table (objects) in such a fashion that it is possible to refer to them from
the symbol table itself as well as from the syntax tree. As basic type we introduce the type
Object which may assume different forms as appropriate to represent constants, variables,
types, and procedures. Only the attribute type is common to all. Here and subsequently we
make use of Oberon's feature called type extension (Reiser and Wirth, 1992).
Object = POINTER TO ObjDesc;
ObjDesc = RECORD type: Type END ;
ConstDesc = RECORD (ObjDesc) value: LONGINT END ;
VarDesc = RECORD (ObjDesc) adr, level: LONGINT END ;

The symbol table consists of lists of elements, one for each scope (see Section 8.2). The
elements consist of the name (identifier) and a reference to the identified object.
Ident = POINTER TO IdentDesc;
IdentDesc = RECORD name: ARRAY 32 OF CHAR;
 obj: Object; next: Ident
 END ;
Scope = POINTER TO ScopeDesc;
ScopeDesc = RECORD first: Ident; dsc: Scope END ;

The syntax tree is best conceived as a binary tree. We call its elements Nodes. If a syntactic
construct has the form of a list, it is represented as a degenerate tree in which the last element
has an empty branch.
Node = POINTER TO NodeDesc;
NodeDesc = RECORD (Object)
 op: INTEGER;
 left, right: Object
 END

Program
Declarations Statements

Front end

Symbol table Syntax tree

Back end

code

 104

Let us consider the following brief excerpt of a program text as an example:
VAR x, y, z: INTEGER;
BEGIN z := x + y - 5; ...

The front end parses the source text and builds the symbol table and the syntax tree as shown
in Figure 16.2. Representations of data types are omitted.

Figure 16.2. Symbol table (below) and syntax tree (above).

Representations of procedure calls, the IF and WHILE statements and the statement sequence
are shown in Figures 16.3 - 16.5.

Figure 16.3. Procedure call.

Figure 16.4. IF and WHILE statements.

:=

-

+ 5

“z” “x” “y”

topScope

root

Scope

Variable

Ident

call

P par par par

a b c

IF

b0 S0 IF

b1 S1 S2

WHILE

b S

 105

Figure 16.5. Statement sequence.

To conclude, the following examples demonstrate how the described data structures are
generated. The reader should compare these compiler excerpts with the corresponding
procedures of the Oberon-0 compiler. All subsequent algorithms make use of the auxiliary
procedure New, which generates a new node.
PROCEDURE New(op: INTEGER; x, y: Object): Item;
 VAR z: Item;
BEGIN New(z); z.op := op; z.left := x; z.right := y; RETURN z
END New;

PROCEDURE factor(): Object;
 VAR x: Object; c: Constant;
BEGIN
 IF sym = ident THEN x := This(name); Get(sym); x := selector(x)
 ELSIF sym = number THEN NEW(c); c.value := number; Get(sym); x := c
 ELSIF sym = lparen THEN Get(sym); x := expression();
 IF sym = rparen THEN Get(sym) ELSE Mark(22) END
 ELSIF sym = not THEN Get(sym); x := New(not, NIL, factor())
 ELSE ...
 END ;
 RETURN x
END factor;

PROCEDURE term(): Object;
 VAR op: INTEGER; x: Object;
BEGIN x := factor();
 WHILE (sym >= times) & (sym <= and) DO
 op := sym; Get(sym); x := New(op, x, factor())
 END ;
 RETURN x
END term;

PROCEDURE statement(): Object;
 VAR x: Object;
BEGIN
 IF sym = ident THEN
 x := This(name); Get(sym); x := selector(x);
 IF sym = becomes THEN Get(sym); x := New(becomes, x, expression())
 ELSIF ...
 END
 ELSIF sym = while THEN
 Get(sym); x := expression();
 IF sym = do THEN Get(sym) ELSE Mark(25) END ;
 x := New(while, x, statseq());
 IF sym = end THEN Get(sym) ELSE Mark(20) END
 ELSIF ...
 END ;
 RETURN x
END statement

These excerpts clearly show that the structure of the front end is predetermined by the parser.
The program has even become slightly simpler. But it must be kept in mind that type checking

; ; ;

S0 S1 Sn

 106

has been omitted in the above procedures for the sake of brevity. However, as a target-
independent task, type checking clearly belongs to the front end.

16.6. Exercises
16.1. Improve code generation of the Oberon-0 compiler such that values and addresses, once
loaded into a register, may possibly be reused without reloading. For the example

z := (x - y) * (x + y); y := x

the presented compiler generates the instruction sequence
LDW R0, SP, x
LDW R1, SP, y
SUB R0, R0, R1
LDW R1, SP, x
LDW R2, SP, y
ADD R1, R1, R2
MUL R0, R0, R1
STW R0, SP, z
LDW R0, SP, x
STW R0, SP, y

The improved version is to generate
LDW R0, SP, x
LDW R1, SP, y
SUB R2, R0, R1
ADD R3, R0, R1
MUL R4, R2, R3
STW R4, SP, z
STW R0, SP, y

Measure the gain on hand of a reasonably large number of test cases.

16.2. Which additional instructions of the RISC architecture of Chapter 9 would be desirable to
facilitate the implementations of the preceding exercises, and to generate shorter and more
efficient code?

16.3. Optimize the Oberon-0 compiler in such a way that scalar variables are allocated in registers
instead of memory if possible. Measure the achieved gain and compare it with the one obtained
in Exercise 16.1. How are variables treated as VAR parameters?

16.4. Construct a module OSGx which replaces OSG and generates code for a CISC architecture
x. The given interface of OSG should be retained as far as possible in order that modules OSS
and OSP remain unchanged.

 107

References
A.V. Aho, J.D. Ullman. Principles of Compiler Design. Reading MA: Addison-Wesley,

1985.

F. L. DeRemer. Simple LR(k) grammars. Comm. ACM, 14, 7 (July 1971), 453-460.

M. Franz. The case for universal symbol files. Structured Programming 14 (1993),
136-147.

S. L. Graham, S. P. Rhodes. Practical syntax error recovery. Comm. ACM, 18, 11,
(Nov. 1975), 639-650.

J. L. Hennessy, D. A. Patterson. Computer Architecture. A Quantitative Approach.
Morgan Kaufmann, 1990.

C.A.R. Hoare. Notes on data structuring.
In Structured Programming. O.-J. Dahl, E.W. Dijkstra, C.A.R. Hoare, Acad. Press,
1972.

U. Kastens. Uebersetzerbau. Oldenbourg, 1990

D. E. Knuth. On the translation of languages from left to right.
Information and Control, 8, 6 (Dec. 1965), 607-639.

D.E. Knuth. Top-down syntax analysis. Acta Informatica 1 (1971), 79-110.

W. R. LaLonde, et al. An LALR(k) parser generator.
Proc. IFIP Congress 71, North-Holland, 153-157.

J.G.Mitchell, W. Maybury, R. Sweet. Mesa Language Manual.
Xerox Palo Alto Research Center, Technical Report CSL-78-3.

P. Naur (Ed). Report on the algorithmic language Algol 60.
Comm. ACM, 3 (1960), 299-314, and Comm. ACM, 6, 1 (1963), 1-17.

P. Rechenberg, H. Mössenböck. Ein Compiler-Generator für Mikrocomputer. C.
Hanser, 1985.

M. Reiser, N. Wirth. Programming in Oberon. Wokingham: Addison-Wesley, 1992.

N. Wirth. The programming language Pascal. Acta Informatica 1 (1971)

N. Wirth. Modula - A programming language for modular multiprogramming.
Software - Practice and Experience, 7, (1977), 3-35.

N. Wirth. What can we do about the unnecessary diversity of notation
for syntactic definitions? Comm. ACM, 20, (1977), 11, 822-823.

N. Wirth. Programming in Modula-2. Heidelberg: Springer-Verlag, 1982.

N. Wirth and J. Gutknecht. Project Oberon. Wokingham: Addison-Wesley, 1992.

 108

Appendix A
Syntax of Oberon-0

ident = letter {letter | digit}.
integer = digit {digit}.

selector = {"." ident | "[" expression "]"}.
factor = ident selector | integer | "(" expression ")" | "~" factor.
term = factor {("*" | "DIV" | "MOD" | "&") factor}.
SimpleExpression = ["+"|"-"] term {("+"|"-" | "OR") term}.
expression = SimpleExpression
 [("=" | "#" | "<" | "<=" | ">" | ">=") SimpleExpression].
assignment = ident selector ":=" expression.
ActualParameters = "(" [expression {"," expression}] ")" .
ProcedureCall = ident [ActualParameters | "*"].
IfStatement = "IF" expression "THEN" StatementSequence
 {"ELSIF" expression "THEN" StatementSequence}
 ["ELSE" StatementSequence] "END".
WhileStatement = "WHILE" expression "DO" StatementSequence "END".
RepeatStatement = “REPEAT” StatementSequence “UNTIL” expression.
statement = [assignment | ProcedureCall | IfStatement | WhileStatement |
RepeatStatement].
StatementSequence = statement {";" statement}.

IdentList = ident {"," ident}.
ArrayType = "ARRAY" expression "OF" type.
FieldList = [IdentList ":" type].
RecordType = "RECORD" FieldList {";" FieldList} "END".
type = ident | ArrayType | RecordType.
FPSection = ["VAR"] IdentList ":" type.
FormalParameters = "(" [FPSection {";" FPSection}] ")".
ProcedureHeading = "PROCEDURE" ident [FormalParameters].
ProcedureBody = declarations ["BEGIN" StatementSequence] "END".
ProcedureDeclaration = ProcedureHeading ";" ProcedureBody ident.
declarations = ["CONST" {ident "=" expression ";"}]
 ["TYPE" {ident "=" type ";"}]
 ["VAR" {IdentList ":" type ";"}]
 {ProcedureDeclaration ";"}.
module = "MODULE" ident ";" declarations
 ["BEGIN" StatementSequence] "END" ident "." .

Predefined procedures
OpenInput first statement in commands
ReadInt(x) read next integer from command's parameter list
eot() "end of text is reached" (Boolean)
WriteInt(x, n) write integer x (with n digits) into Log viewer
WriteChar(x) write CHR(x) into Log viewer
WriteLn end line and append to output text
LED(x) show x on LEDs
Switch() state of switches (INTEGER)

 109

Appendix B
The ASCII Character Set
 . 0 1 2 3 4 5 6 7

 0 nul dle 0 @ P ` p
 1 soh dc1 ! 1 A Q a q
 2 stx dc2 " 2 B R b r
 3 etx dc3 # 3 C S c s
 4 eot dc4 $ 4 D T d t
 5 enq nak % 5 E U e u
 6 ack syn & 6 F V f v
 7 bel etb ' 7 G W g w
 8 bs can (8 H X h x
 9 ht em) 9 I Y i y
 A lf sub * : J Z j z
 B vt esc + ; K [k {
 C ff fs , < L \ l |
 D cr gs - = M] m }
 E so rs . > N ^ n ~
 F si us / ? O _ o del

	Title Page
	Preface
	Preface (2011 Edition)
	Preface (2017 Edition)
	1 Introduction
	2 Language and Syntax
	2.1 Exercises

	3 Regular Languages
	3.1 Exercises

	4 Context-Free Languages
	4.1 Recursive Descent
	4.2 Top-Down Parsing
	4.3 Bottom-Up Parsing
	4. 4 Exercises

	5 Grammars and Semantics
	5.1. Type Rules
	5.2. Evaluation Rules
	5.3. Translation Rules
	5.4. Exercises

	6 Oberon-0 Language
	6.1. Exercises

	7 Oberon-0 Parser
	7.1 Scanner
	7.2 Parser
	7.3 Syntax Errors
	7.4 Exercises

	8 Context of Declarations
	8.1 Declarations
	8.2 Data Type Entries
	8.3 Runtime Data
	8.4. Exercises

	9 Target Architecture
	9.1 Resources and Regs
	9.2 Register Instructions
	9.3 Memory Instructions
	9.4 Branch Instructions
	9.5 Emulator

	10 Expressions and Assignmts
	10.1 Straight Code Generate
	10.2 Delayed Code Generat
	10.3 Indexed Variables
	10.4 Exercises

	11 Statements and Expressions
	11.1 Compares and Jumps
	11.2 Conditions and Loops
	11.3 Boolean Operations
	11.4 Boolean Assignments
	11.5 Exercises

	12 Procedures and Locality
	12.1 Runtime Organization
	12.2 Adddressing Variables
	12.3 Parameters
	12.4 Procedures
	12.5 Standard Procedures
	12.6 Function Procedures
	12.7 Exercises

	13 Elementary Data Types
	13.1 REAL and LONGREAL
	13.2 Numeric Compatibility
	13.3 SET
	13.4 Exercises

	14 Arrays, Ptrs, Proc Types
	14.1 Open Arrays
	14.2 Pointers
	14.3 Procedure Types
	14.4 Exercises

	15 Modules and Compilation
	15.1 Information Hiding
	15.2 Separate Compilation
	15.3 Symbol Files
	15.4 Addressing Externals
	15.4 Checking Consistency
	15.6 Exercises

	16 Optimizations
	16.1 General Considerations
	16.2 Simple Optimizations
	16.3 Repeated Evaluation
	16.4 Register Allocation
	16.5 Compiler Structure
	16.6 Exercises

	A Oberon-0 Syntax
	B ASCII Character Set

